Unmanned Aircraft Systems (UAS) Traffic Management (UTM) Project

Studying human-system interaction within the UTM system

Lynne Martin and the AOL HF Team:

Joey Mercer, Jeffrey Homola, Faisal Omar, Lauren Claudatos, Cynthia Wolter, Yasmin Arbab, Madison Goodyear, Michele Cencetti, Vimmy Gujral, Kim Jobe, and Abhay Borade

UTM Technical Interchange Meeting
February 23rd, 2021
Outline

• Technical Capability Level (TCL) and Risk Association
• TCL and Human Systems Integration (HSI) Considerations
• Demonstration Parameters
• Human Factors (HF) Data Collected across the UTM Project
• Flight Test Demonstration – Summary
• General HSI Findings
 • Information quantity
 • Using information
 • Increasing complexity
 • Standardization
• UTM as a Human-Automation System
Technical Capability Level (TCL) and Risk Association

TCL 1
- Remote Population
- Low Traffic Density
- Rural Applications
- Multiple VLOS Operations
- Notification-based Operations

TCL 2
- Sparse Population
- Moderate-Low Traffic Density
- Rural / Industrial Applications
- Multiple BVLOS Operations
- Tracking and Operational Procedures

TCL 3
- Moderate Population
- Moderate Traffic Density
- Suburban Applications
- Manned/Unmanned BVLOS Operations
- Detect and Avoid Public Safety Operations

TCL 4
- Dense Population
- High Traffic Density
- Urban Applications
- Dense Urban BVLOS Operations
- Large Scale Contingency Management

Increasing risk

Increasing capability
TCL and HSI Considerations

TCL 1
- Simple interface
- Few functions
- Developer-user
- Pre-plan whole area
- Simple questions & observations

TCL 2
- Simple interface
- Few functions
- Developer-user
- Pre-plan own flight
- Simple questions & observations

TCL 3
- More complex interface
- Many functions
- Crew member
- Pre-plan own flight
- Detailed questions

TCL 4
- More complex interface
- Many functions
- Crew member
- Pre-plan own flight
- Detailed questions
Demonstration Parameters

<table>
<thead>
<tr>
<th>Flight Demonstration Details</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
<th>Test 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Capability Level (TCL)</td>
<td>TCL 1</td>
<td>TCL 2</td>
<td>TCL 2</td>
<td>TCL 3</td>
<td>TCL 4</td>
</tr>
<tr>
<td>Date</td>
<td>2015-16</td>
<td>2016</td>
<td>2017</td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Locations</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Flying organizations</td>
<td>8</td>
<td>11</td>
<td>18</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Vehicles</td>
<td>10</td>
<td>7</td>
<td>27</td>
<td>28</td>
<td>21</td>
</tr>
<tr>
<td>Flight days</td>
<td>8</td>
<td>5</td>
<td>17</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>UAS Service Supplier (USS)</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Scenarios</td>
<td>3</td>
<td>4</td>
<td>17</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Test 1</td>
<td>Test 2</td>
<td>Test 3</td>
<td>Test 4</td>
<td>Test 5</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Technical Capability Level (TCL)</td>
<td>TCL 1</td>
<td>TCL 2</td>
<td>TCL 2</td>
<td>TCL 3</td>
<td>TCL 4</td>
</tr>
<tr>
<td>Date</td>
<td>2015-16</td>
<td>2016</td>
<td>2017</td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Locations</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Flying organizations</td>
<td>8</td>
<td>11</td>
<td>18</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Vehicles</td>
<td>10</td>
<td>7</td>
<td>27</td>
<td>28</td>
<td>21</td>
</tr>
<tr>
<td>Flight days</td>
<td>8</td>
<td>5</td>
<td>17</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>UAS Service Supplier (USS)</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Scenarios</td>
<td>3</td>
<td>4</td>
<td>17</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Flight Demonstration Level and Year</td>
<td>Test 1</td>
<td>Test 2</td>
<td>Test 3</td>
<td>Test 4</td>
<td>Test 5</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Technical Capability Level</td>
<td>TCL 1</td>
<td>TCL 2</td>
<td>TCL 2</td>
<td>TCL 3</td>
<td>TCL 4</td>
</tr>
<tr>
<td>Date</td>
<td>2015-16</td>
<td>2016</td>
<td>2017</td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Data Collected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant surveys</td>
<td>N/A</td>
<td>72</td>
<td>141</td>
<td>274</td>
<td>149</td>
</tr>
<tr>
<td>Interviews & debriefs</td>
<td>N/A</td>
<td>5</td>
<td>18</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Hours of debrief</td>
<td>N/A</td>
<td>Approx. 5 hours</td>
<td>Approx. 9 hours</td>
<td>Approx. 8.5 hours</td>
<td>Approx. 9 hours</td>
</tr>
<tr>
<td>Flight sessions observed</td>
<td>N/A</td>
<td>24</td>
<td>34</td>
<td>50</td>
<td>75</td>
</tr>
</tbody>
</table>
Flight Test Demonstrations - Summary

• Successful demonstration that UTM is a viable method for communication and coordination between sUAS operations

• Successful demonstration of:
 – Data exchange through the system, bringing information from one party to another for situation awareness
 – sUAS enacting contingency maneuvers, showing alerting and demonstrating what information would be needed for real time decision making
 – Complex operations, e.g., multiple, altitude-stratified operations, that gave us a window into the types of procedures crews needed to have in place
• In earlier tests
 • Details missing in UTM information that made it more difficult for crews to establish situation awareness (SA)
• In later tests
 • USS interfaces matured and much more detailed information was available for broader SA

Mean situation awareness responses

Response scale was 1 to 7, extended in chart to show standard deviations
General HSI findings – Using Information

Efficiency of USS interaction

- In earlier tests
 - Less information (& more external planning) in UTM made crew decision making more straightforward

- In later tests
 - USS interfaces matured and more detailed information was available, but it was needed more quickly

Response scale was 1 to 7, extended in chart to show standard deviations
• In later tests
 • Clutter
 • More complex environments required more information to be presented
 • Too many messages for crew to read
 • Message labels not informative for crew

Clarity of information

Response scale was 1 to 7
General HSI Findings – Standardization

- Unfamiliar terminology
 - Information was hard for some users to interpret

- Measurement consistency
 - Use of different units required crews to manually resolve issues

- Undefined procedures
 - UAS an infant industry – no standard approaches to guide the users
 - Too little time for users to make complex contingency decisions

Mean confidence responses

- **Very low** 1
- **Very high** 8

Response scale was 1 to 7, extended in chart to show standard deviations.
UTM as a Human-Automation System

• While the end-state of the system is fully automated, the interim nearer-term states will still require manual interaction

• Challenges for near-term usage:
 – Designing displays that are easily usable in a TCL4 environment
 • E.g., Messages that are filtered by criticality
 – Creating UTM training for users

• Challenges for mid-term usage:
 – Automating functions in a manner that keeps remaining manual tasks as coherent activities
Summary and Future Work

• Successful demonstration that UTM is a viable method for communication and coordination between sUAS operations

• But also, to provide enough information to operators for them to have awareness and coordinate actions

• Future work should spotlight human-automation system interaction to scope nearer-term evolutions of the UTM system
Most Recent Papers and Reports

