Unmanned Aircraft Systems (UAS) Traffic Management (UTM) Project

UTM Flight Testing at NASA LaRC

Lou Glaab
Maria Consiglio
Outline

• General objectives of the presentation
 – Provide insights
 – Lessons Learned
 – Describe next steps and follow-on work

• Characterization of UTM LaRC Flight Tests

• Review selected flight tests

• Summary

• List of
 – Team Members
 – Reports
 – Invention disclosures, licenses and patents
First live vehicle connected to the NASA UTM system 2015

Subsequent sUAS flight tests were performed to support an array of technical areas that included:

- Autonomous Detect/Sense and Avoid (ASAA, eg ICAROUS)
- Autonomous Contingency Management (ACM, eg Safe2Ditch)
- Vehicle to Vehicle (V2V) communication
- UTM traffic management system development and integration
- Assured range containment
- Autonomous powerline inspection
- Human Factors for UTM Operators
- Communication and Control (C2) links
- Degraded GPS
- Real-time ground risk assessment
- Autonomous merging and spacing
- Failure Modes Effects and Criticality Analysis (FMECA)

Integrated UTM TCL-4 Pathfinder test performed in 2019

- Provided integrated system evaluation
- ACM, ASAA, V2V, UTM traffic management system
- Human Factors assessment

ICAROUS: Integrated Configurable Architecture for Reliable Operation of Unmanned Systems
Objectives

1. Evaluate use of micro ADS-B receiver to provide ADS-B-in
2. Evaluate the utility of using ADS-B-in to provide effective sUAS autonomous traffic deconfliction
 - sUAS to sUAS
 - sUAS to general aviation (GA) aircraft
3. Assess performance of ICAROUS system to deconflict traffic
4. Assess effectiveness of reduced-power ADS-B for sUAS applications
5. Assess the well “clear definition” for sUAS
6. Acquire high-res, position-correlated video of sUAS and manned aircraft
 - Used to develop optical-based traffic detection algorithms

Results

1. Micro ADS-B unit provides effective input
 - Ghost targets observed due to Mode-C transponder rebroadcast
2. ICAROUS able to maintain well clear (2,000ft)
3. Low-power ADS-B feasible (~400mW vs 40W)
4. Low-cost/high-res cameras can support well-clear optical DAA (Sony Action cams)
UTM Safe2Ditch Testing

• Objectives
 – Perform efficacy testing of ACM concept
 – Assess autonomous machine vision verification of ditch site
 – Demonstrate autonomous re-routing based on ditch site state
 – Evaluate integration of S2D/ACM with overall system

• Results
 – ACM functions on sUAS can greatly mitigate ground risk
 – COTS cameras combined with state-of-the-art micro computers and algorithms enables autonomous ditch site verification
 – Geolocation of ground targets is adequate
 • Improved geolocation could support smaller ditch site usage
 – Integration of S2D with ICAROUS tested
 • Ditch site top of descent provided by S2D
 • ICAROUS provided route
 • Included geofencing around other vehicle’s airspace
• Objectives
 1. Characterize performance of a prototype commercially available sUAS airborne radar to detect and track sUAS as well as General Aviation (GA) non-cooperative aircraft
 2. Integrate radar output into ICAROUS and evaluate non-cooperative autonomous sense and avoid scenarios

• Results
 – Collaborative flight testing performed with Mid-Atlantic Aviation Partnership (MAAP)
 • MAAP BFD multi-rotor ownership
 • Liberty University C-172
 • NASA ICAROUS software and Tempest sUAS
 • Used Kentland Farms MAAP test site
 – Prototype radar able to detect and track targets most of the time
 – Substantial background clutter issues were observed
 – Prototype radar: Echodyne Echoflight radar
Objective: Flight test effort aimed at developing and assessing technologies essential for UTM operations
- Dedicated Short Range Communication (DSRC) V2V comm links
- Evaluation of 4G cellular to provide command and control for sUAS
- Collection of high-res position-correlated video for optical sense and avoid development (secondary)
- Fixed wing evaluation of Safeguard (secondary)

Results
- DSRC effective range is limited to less than a 1km as tested
 - High frequency (5.9 GHz) and low-power (26 dB)
- 4G cell comm is effective with some short-duration drop-outs
 - Tested in rural area
 - No link ~3% of the time
- Sony action cams sensors/lenses can enable effective optical detect and avoid
 - Overall system weight still a challenge for full 360 deg coverage
- Safeguard functioned adequately at fixed-wing speeds (20 m/s)
UTM TCL-4 Pathfinder

Objectives

1. ICAROUS/S2D contingency management and effects on UTM system
 - Evaluate Ground Control Station (GCS) operator situational awareness, workload, reactions to contingency operations using representative UTM interface
 - Assess the effect of Autonomous Sense and Avoid (ASAA)
 - Evaluate effect of airspace-constrained contingency management (ICAROUS routing/re-routing)
 - With high-density operations (simulated aircraft)
2. Evaluate Flight Alarm (FLARM) for sUAS ASAA
3. Long range cross-center operations
4. Botlink 4G characteristic data

Results

- FLARM is effective for sUAS ASAA
- ICAROUS can effectively perform sUAS traffic separation
- Human separation of sUAS traffic is a monotonous task
- HF results indicate vehicle intent is highly-desirable
Summary

• Insights
 – Many challenges exist towards ubiquitous sUAS operations
 – Both for on-ground and airborne aspects
 – The UTM project achieved progress in both
 – Fully-operational sUAS transportation system is required before UAM

• Lessons Learned
 – Separate technology development and testing is effective
 – Integration and testing of technologies is difficult
 – Integrated testing has extremely high value

• Next Steps
 – STEReO: Application of UTM technologies for disaster response
 – AAM HDV
 • Prototype UAM system development and test
 • Leverage technologies from UTM/SWS/ATM-X/TTT
 • Enable effective management of off-nominal scenarios
 • Coordination of dynamic re-routes throughout the UAM system
 • Operational credit for NASA/other technologies
 • sUAS Part-135 BVLOS advancement
List of LaRC personnel

<table>
<thead>
<tr>
<th>#</th>
<th>First</th>
<th>Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Swee</td>
<td>Balachandran</td>
</tr>
<tr>
<td>2</td>
<td>Randy</td>
<td>Beard</td>
</tr>
<tr>
<td>3</td>
<td>Viren</td>
<td>Bijaj</td>
</tr>
<tr>
<td>4</td>
<td>Dave</td>
<td>Bradley</td>
</tr>
<tr>
<td>5</td>
<td>Eric</td>
<td>Chancey</td>
</tr>
<tr>
<td>6</td>
<td>Matt</td>
<td>Coldsnow</td>
</tr>
<tr>
<td>7</td>
<td>Toby</td>
<td>Comeaux</td>
</tr>
<tr>
<td>8</td>
<td>Maria</td>
<td>Consiglio</td>
</tr>
<tr>
<td>9</td>
<td>Chester</td>
<td>Dolph</td>
</tr>
<tr>
<td>10</td>
<td>Thane</td>
<td>Downing</td>
</tr>
<tr>
<td>11</td>
<td>Brendan</td>
<td>Duffy</td>
</tr>
<tr>
<td>12</td>
<td>Mark</td>
<td>Frye</td>
</tr>
<tr>
<td>13</td>
<td>Tyler</td>
<td>Garrett</td>
</tr>
<tr>
<td>14</td>
<td>Lou</td>
<td>Glaab</td>
</tr>
<tr>
<td>15</td>
<td>Trish</td>
<td>Glaab</td>
</tr>
<tr>
<td>16</td>
<td>Alex</td>
<td>Glandon</td>
</tr>
<tr>
<td>17</td>
<td>Rich</td>
<td>Grube</td>
</tr>
<tr>
<td>18</td>
<td>Dave</td>
<td>Hare</td>
</tr>
<tr>
<td>19</td>
<td>Dan</td>
<td>Healey</td>
</tr>
<tr>
<td>20</td>
<td>Jeff</td>
<td>Hill</td>
</tr>
<tr>
<td>21</td>
<td>Troy</td>
<td>Landers</td>
</tr>
<tr>
<td>22</td>
<td>Ticatch</td>
<td>Larry</td>
</tr>
<tr>
<td>23</td>
<td>Justin</td>
<td>Lisee</td>
</tr>
<tr>
<td>24</td>
<td>Parker</td>
<td>Lusk</td>
</tr>
<tr>
<td>25</td>
<td>Mahyar</td>
<td>Malekpour</td>
</tr>
<tr>
<td>26</td>
<td>Chris</td>
<td>Manderino</td>
</tr>
<tr>
<td>27</td>
<td>Robert</td>
<td>McSwain</td>
</tr>
<tr>
<td>28</td>
<td>Sami</td>
<td>Mian</td>
</tr>
<tr>
<td>29</td>
<td>Andrew</td>
<td>Moore</td>
</tr>
<tr>
<td>30</td>
<td>Chris</td>
<td>Morris</td>
</tr>
<tr>
<td>31</td>
<td>Cesar</td>
<td>Munoz</td>
</tr>
<tr>
<td>32</td>
<td>Anthony</td>
<td>Narkawicz</td>
</tr>
<tr>
<td>33</td>
<td>Andrew</td>
<td>Peters</td>
</tr>
<tr>
<td>34</td>
<td>Mike</td>
<td>Politowics</td>
</tr>
<tr>
<td>35</td>
<td>Nick</td>
<td>Rymer</td>
</tr>
<tr>
<td>36</td>
<td>Matt</td>
<td>Schubert</td>
</tr>
<tr>
<td>37</td>
<td>Scott</td>
<td>Simms</td>
</tr>
<tr>
<td>38</td>
<td>Kyle</td>
<td>Smalling</td>
</tr>
<tr>
<td>39</td>
<td>George</td>
<td>Szatkowski</td>
</tr>
</tbody>
</table>
List of additional 2020 reports

List of additional 2017, 2018 and 2019 reports

- 2019

- 2018

- 2017
 - Marco A. Feliú, Camilo Rocha, and Swee Balachandran. Verification-driven Development of ICAROUS Based on Automatic Reachability Analysis, International SPIN Symposium on Model Checking of Software (SPIN 2017), Santa Barbara, CA, USA, July 2017
Invention Disclosures, Licenses, and Patents

• Invention Disclosures and Open Source Releases

• Patents
 – Safe2Ditch: US Patent #10,403,153
• General objectives of the presentation
 – Provide insights
 – Lessons Learned
 – Describe next steps and follow-on work
• Characterization of UTM LaRC Flight Test
• Review selected flight tests
• Summary