

Hyper-Spectral Communications, Networking & ATM (HSCNA) as Foundation for Safe & Efficient Future Flight: Transcending Aviation Operational Limitations with Diverse & Secure Multi-Band, Multi-Mode, & mmWave Wireless Links

David W. Matolak, Ph.D., PI

AIAA Aviation Conference

25 June 2018

UNIVERSITY OF

Outline

Introduction

- Project Description
- Project Tasks
 - Tasks 1-6 & example results
- Next...
- Conclusion

Strategic Implementation Plan

Introduction

• There is a lot going on in aviation...

Atlanta Airport...
 https://www.youtube.com/watch?v=XXoDeuwokQ&list=PL3416E39D02A5BFE9&t=0s04ndex=7
 https://www.youtube.com/watch?v=eWv4wyygg

NASA: UAS Traffic Management

- UTM exploring/ validating ATM technologies: LOW altitude/ small aircraft
- Recently extended to Urban Air Mobility (UAM) (Uber Elevate)

NASA's **ULI Program**→Our Project

- SIP Strategic Thrusts
 - ST1: Safe, Efficient Growth in Global Operations SOUTH CAROLINA
 - ST2: Innovation in Commercial Supersonic Aircraft
 - ST3: Ultra-Efficient Commercial Vehicles
 - ST4: Transition to Alternative Propulsion & Energy
 - ST5: Real-Time System-Wide Safety Assurance
 - ST6: Assured Autonomy for Aviation Transformation
- Our ULI Project: HSCNA, Co-Investigators
 - Dr. Ismail Guvenc (NC State)
 - Dr. Hani Mehrpouyan (Boise State)
 - Greg Carr (AT Corp., & Paul Davis, Ben Boisvert)

UNIVERSITY OF

NC STATE

UNIVERSITY

HSCNA Overview

- Three Strategic Thrust Outcomes (TOs)
 - TO1: More robust, efficient, reliable, & secure aviation communication & networking
 - TO2: ATM system capable of handling significantly larger air traffic density (including UAS), w/rapid & reliable, automated & collaborative ATC & ATM
 - TO3: Efficient airport operations to remove delays,
 reduce costs, & increase situational awareness

HSCNA Overview (2)

- Beneath TOs: 4 project **Research Outcomes** (ROs): Develop Strategies & CNS Techniques
 - RO1: increase aviation link & network capacity

X

- RO2: enhance aviation link diversity, reliability, & security
- RO3: comprehensive ATM simulations for future air traffic density & complexity

T

– RO4: improve slow & inefficient airport operations

HSCNA Overview (3)

Project Tasks

 Task 1: multi-band networking ConOps for multiple phases of flight & all communication link types & modes, e.g., air-X

 Task 2: quantify aviation band & comm. technology capacity /coverage/ performance & shortcomings, growth potential

Task 3: develop analysis/simulation SW tools/prototypes, assess adaptive link/net performance (multi-band, -mode) in hyper-spectral network

HSCNA Overview (4)

Project Tasks (continued)

Task 4: quantify mmWave wireless airport subnetworkcapacity/efficiency gains. Measure, model channels,validate proto airport mmWave sys

Task 5: develop novel unauthorized UASdetection/localization techniques to detect/track anyunauthorized UAS that enters any restricted zone

Task 6: develop realistic/comprehensive ATM simulation capability to assess gains of hyper-spectral & mmWave networking (link performance per aircraft, supportable traffic density, multi-vehicle collaboration, & operational benefits)

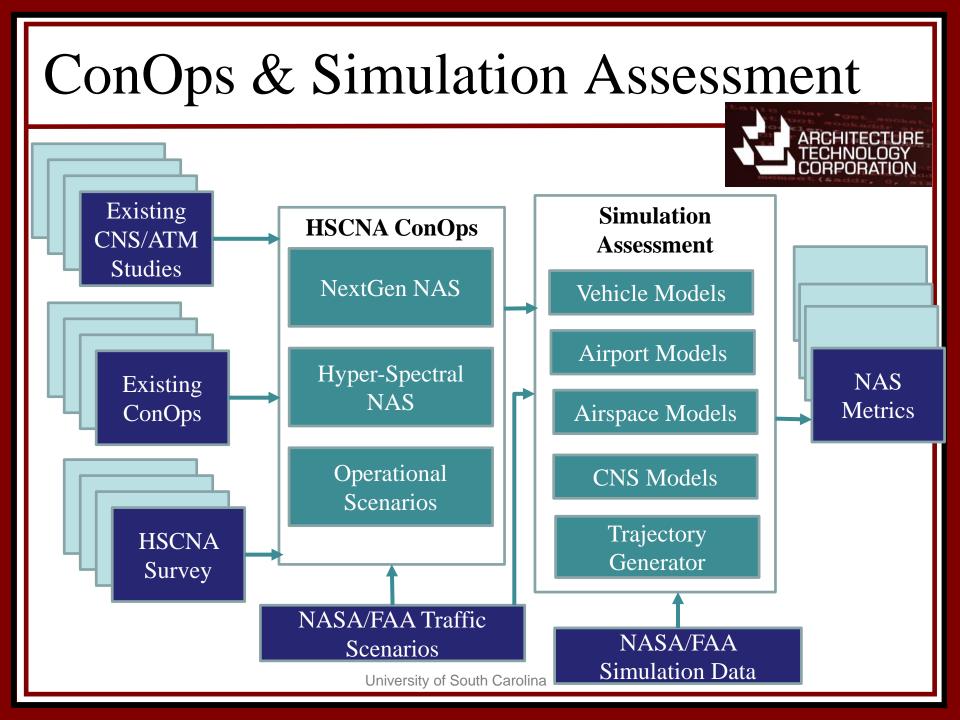
What We Can Do Today

Boeing, 2017 Paris Air Show

Task 1: HSCNA Concept of Operations

Purpose

 Provide operational context for HSCNA research, & basis for Simulation Assessment (Task 6)


What it does

- Describes future ATM concepts & related CNS technologies; does NOT prescribe future NAS operations
- Focus on op scenarios that represent interactions between vehicles & ATC/ATM in controlled airspace (op interactions well-defined by FAA regs)

What it includes

- NextGen NAS Future NAS as planned by FAA in 2025
- Hyper-Spectral NAS Future NAS including advanced ATM concepts & CNS technologies (2035+)
- Op scenarios representing future air traffic demand including # flights, types of vehicles, missions, & other variables

Draft ConOps (December 2017)

- NextGen NAS based on FAA's document "The Future of the NAS"
- Highlighted relevant systems, capabilities, & operational transformations
- Assume Hyper-Spectral NAS includes capabilities & benefits of NextGen NAS
 - Hyper-Spectral NAS will also include novel CNS/ATM capabilities beyond NextGen University

Hyper-Spectral Technologies Application of spectrally, temporally, & spatially efficient links in a multi-band, multi-mode, hyper-spectral network

Dectral | **Operational Transformations**

More robust, efficient, reliable, & secure aviation communication & networking

- Higher data rates \Rightarrow lower latency
- Higher reliability ⇒fewer retransmissions ⇒ lower latency
- Higher spectral efficiency ⇒ more transmissions (users) per Hz ⇒ more aircraft per unit volume

ATM system will be capable of handling significantly larger air traffic density, including UAS, through rapid, reliable, automated, & collaborative ATM.

Highly efficient airport operations that reduce delays, reduce costs & increase situational awareness.

High-capacity reliable communications links will enable autonomous planning & scheduling, & multi-vehicle cooperation & interoperability.

Accurate & ubiquitous short-term numerical weather prediction. All aircraft are weather sensors, hence the set of aircraft aloft forms a (mobile) network of weather stations. All aircraft data gets to ATM centers (which also get additional weather data). Aircraft communicate whatever is needed to describe a weather event's "flow," severity, extent, etc.

Application of link disruption mitigation techniques support threat prognosis, alerting &guidance for real-time system-wide safety assurance.

HSCNA Survey

- In May 2018, we distributed a survey to government, industry, & academia
- Survey asks for future (2025+) ATM concepts that would be enabled by significant CNS improvements
 - Concepts could improve NAS capacity, safety, efficiency, resiliency, flexibility, predictability, etc.
 - Identify barriers (technical, cost, risk) related to CNS that must be overcome to enable concept of South Carolina

ATM	Description	CNS		
Concept		Barriers		
Constant streaming of aircraft state, intent, & vehicle health data to Airline Operational Control (AOC) and ATM	Enables real-time monitoring of flights, supports real-time detection & alerting of hazards, & timely identification & localization of aircraft in distress	Data rate, cost, & geographic coverage		
Single Pilot Operations for commercial transport aircraft	Provide continuous, secure & reliable streaming of aircraft state (telemetry) to ground station & command & control from ground to aircraft in high density operations	Requires increased cockpit automation & ground-based redundancy		

HSCNA Survey – Your Help Needed

HSCNA survey includes two rounds

Round 1 - ATM researchers identify ATM Concepts & CNS Barriers

Round 2 - CNS researchers identify candidate future A-G & A-A technologies for Concepts & Barriers identified in Round 1

These concepts & technologies will be included in Final ConOps

Enables characterization of the Hyper-Spectral NAS

Dear Colleague,

David Matolak is the Principal Investigator for a NASA University Leadership Initiative (ULI) team led by the University of South Carolina conducting research into advanced, wireless communication networks to enhance the safety and efficiency of air traffic management for both manned and unmanned aircraft. The expected future growth in air traffic (including UAS) cannot take place without highly-reliable and efficient communications and networking among aircraft, ground stations, and other entities. Our research objectives include the development of strategies and CNS techniques for dramatically increasing aviation link and networky, reliability, and security.

As part of our research effort we are soliciting inputs from government, industry and academia to identify future (2025 and beyond) Air Traffic Management (ATM) concepts that would be enabled by significant improvements in CNS compared with today's NAS. These concepts could improve NAS capacity, safety, efficiency, resiliency, flexibility, predictability, etc. We also want to identify barriers (technical, cost,

risk) related to CNS that must be overcome to enable the concept. Below we have provided two examples. We ask that you add your own ATM concepts and CNS barriers and return them to us via email. PLEASE PROVIDE YOUR RESPONSE BY June 15, 2018.

You may find out more about our NASA ULI project here: https://sites.google.com/site/nasahscna/home

Thank you for participating in this survey and supporting our NASA-sponsored research efforts.

When you respond, please do so to the following:

David W. Matolak Department of Electrical Engineering University of South Carolina Columbia, SC, USA <u>matolak@sc.edu</u>

Greg Carr Research Engineer Architecture Technology Corp. Campbell, CA, USA gcarr@atcorp.com

Task 2: Aviation Communications & Networking Assessment

- Collect information: all current/planned CNS systems applicable to civil aviation ✓
- Assess potential link/system
 capacities, reliability, & ConOps role

Identification of Technologies for Provision of Future Aeronautical Communications

Tricia Gilbert, Glen Dyer, Steve Henriksen, Jason Berger, Jenny Jin, and Tony Boci ITT Industries, Herndon, Virginia

Propose & evaluate new candidate technologies

BOENG

Engineering, Operations & Technology Boeing Research & Technology

Revolutionary and Advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) Options for all altitudes of UAS operations

UAS CNS Architecture Concept for Controlled Air Space

RTCA-DO-362 September 22, 2016

RTCA, Inc. 1150 18th Street, NW, Suite 910 Washington, DC 20036-4001, USA

RTCA

Command and Control (C2)

Data Link Minimum Operational Performance Standards (MOPS)

(Terrestrial)

Identification and Analysis of Future Aeronautical Communications Candidates A Study of Concepts and Technologies to Support the Aeronautical Communications Needs in the NextGen and Beyond National Airspace System

Joel M. Wichgers and James P. Mitchell Rockwell Collins Advanced Technology Center, Cedar Rapids, Iowa

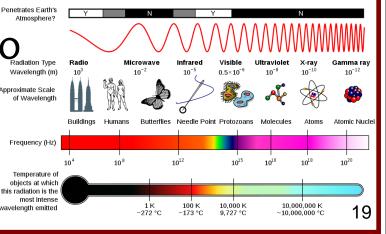
3rd-Generation-Partnership-Project; Technical-Specification-Group-Radio-Access-Network; Study-on-Enhanced-LTE-Support-for-Aerial-Vehicles (Release-15)

Prenared by SC-228

Ite

TR06027

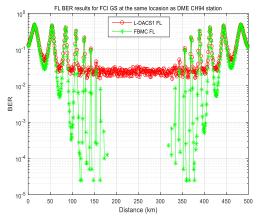
Task 2: Example, L-band Systems

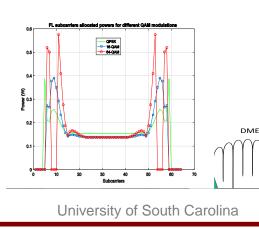

	ADS-B	UAT	Mode S	Link 16	DME	GoGo Internet	LDACS 1	LDACS 2
	1090ES	~~~				service		
		(DOC 9861)		(JTIDS/ MIDS)			(Advanced	(Advanced
	(Extended	978 MHz				(Aircell)	version of M-	version of
	Squitter)	ADS-B					AMC & TIA 902	LDL,
							(P34))	AMACS)
Radio Freq.	1030 Rx	978	1030 Rx	969-1206	960-1215	850 for AG mode (to	FL: 985.5-1008.5	960-978
(MHz)	1090 Tx		1090 Tx (Mandate			be defined & allocated for other	RL: 1048.5-1071.5	
			2020)			bands in future)	ML. 1040.0-1071.0	
Channel	2 MHz	2 MHz	1 MHz both	5 MHz	1 MHz	1.25 MHz	$625~\mathrm{kHz}$	200 kHz
bandwidth			bands					
Modulation	CPFSK/	CPFSK	CPFSK/GMS	Hybrid FH-DSSS, cyclic	Gaussian	Based on IS-856	OFDM	CPFSK/
schemes	GMSK		K	code-shift keying (CCSK)	shaped pulses	TIA/EIA Standard		GMSK
				for M-ary symbol mod. & MSK for chip mod. Based on		(IMT-2000)		
				ISA for chip mod. Based on IS-856 TIA/EIA Std (IMT-2000)				
User data	1 Mbps	1 Mbps	1 Mbps	46.08-284.16 kbps	Up to 2700	Download: 500-600	FL+RL= 833.330	$270~{ m kbps}$
rate range					pulse pairs per	kbps	ksymbols/s	
	1 Mbps for		1 Mbps	1 Mbps FHSS 51 channels	second	Upload: 300 kbps Total 3 Mbps for all		
Capacity	up to 600		1 Mops	51 channels		users		
	targets							
Spectral	<1	<1	<1	N/A	N/A	N/A	0.6	1.3
efficiency								
(bps/Hz)								
Duplexing/	TDD	TDD	TDD	TDMA		CDMA/TDD	FDD/TDMA	TDD
Multiple-								
Access								
Typical	185.2 - 277.8	185.2-277.8	Up to 463	555	250		370	370
range (km)								
Network		Cellular	N/A	Shared channel	Point-to-	Cellular	Cellular point-to-	Cellular
overall		based		Between numerous	multipoint		multipoint	point-to-
topology				stations.				multipoint
University of South Carolina								18

Task 3: Multi-Band & Multi-Mode Communications & Networking

- MultiBand: simultaneously and/or alternately employ different spectral bands
 - Band differences can adjust latency, reduce interference, offload to increase data rate
- MultiMode: traditional (AG, AS, AA) plus Air-X

University of South Carolina


• Hyper-spectral: HF to VHF to L-, C-, K-bands, mmWave



Task 3: Major Goals

- Comprehensive multi-band comm. system analysis, designs (capacity, coverage, latency, P_b...)
 2- and 3-band designs, prototypes, demos
- Multi-mode comm. link quantification
 Realistic channel, interference, radio model S-ss
- Integration into ATM simulations

Digital Front End

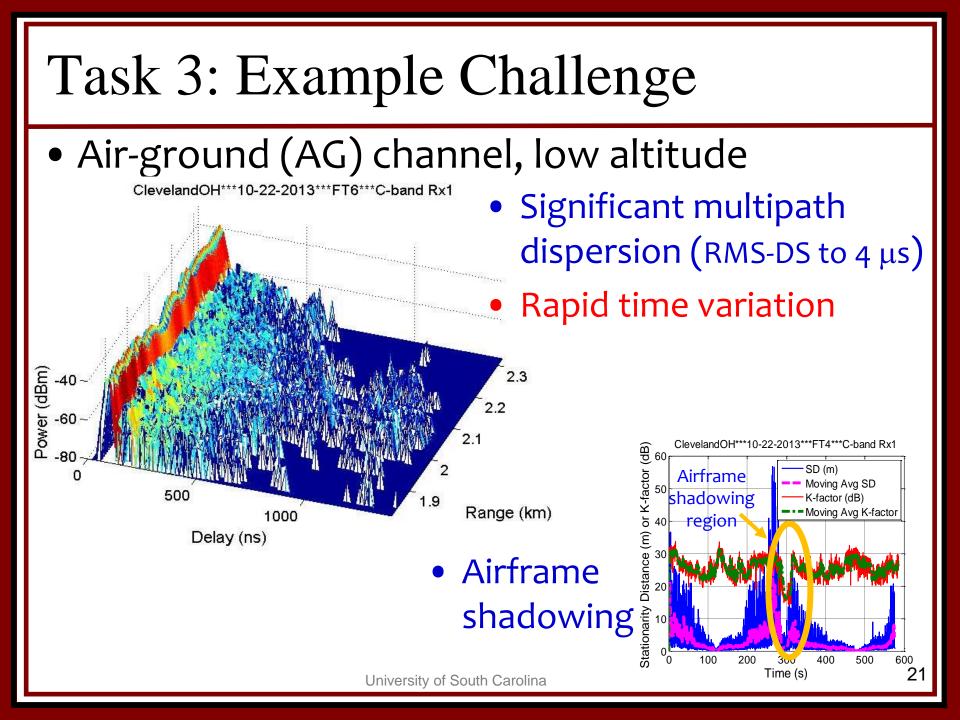
Modern

Frror

Correction

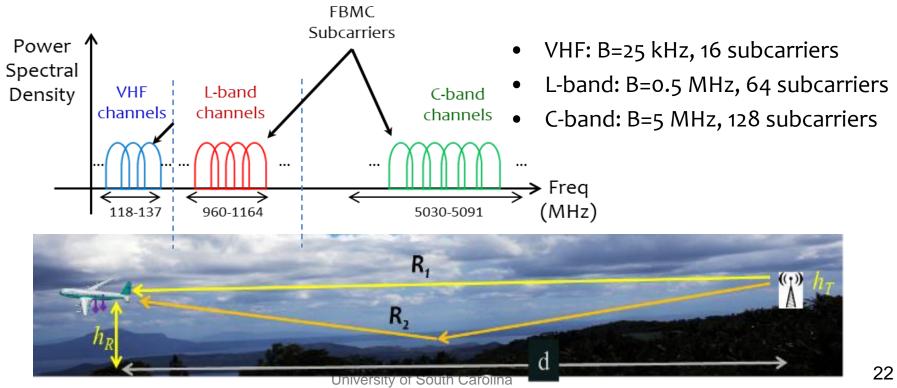
SOFTWARE

A/D

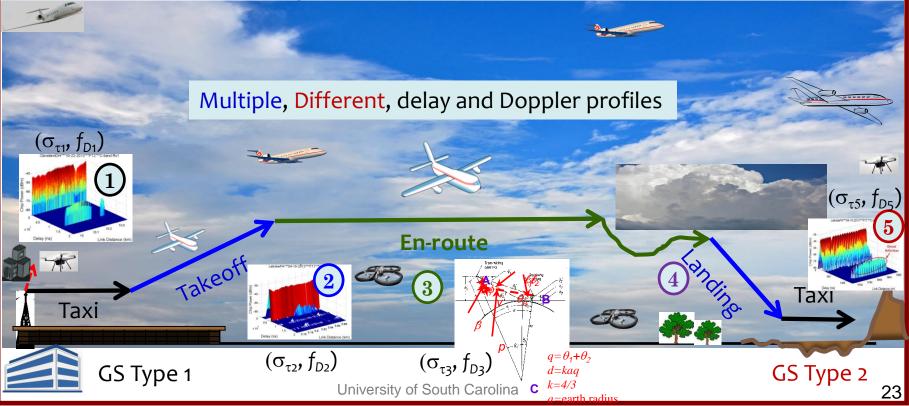

1E AMPLIFIER

Base Band

Processing

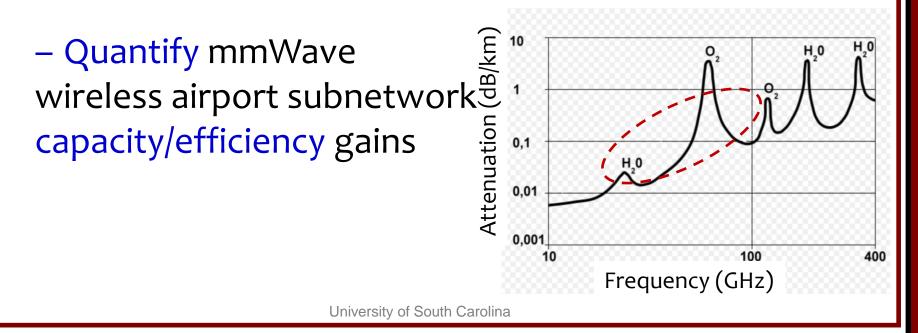

Network

Routing GUI


Task 3: Simple Multi-band Example

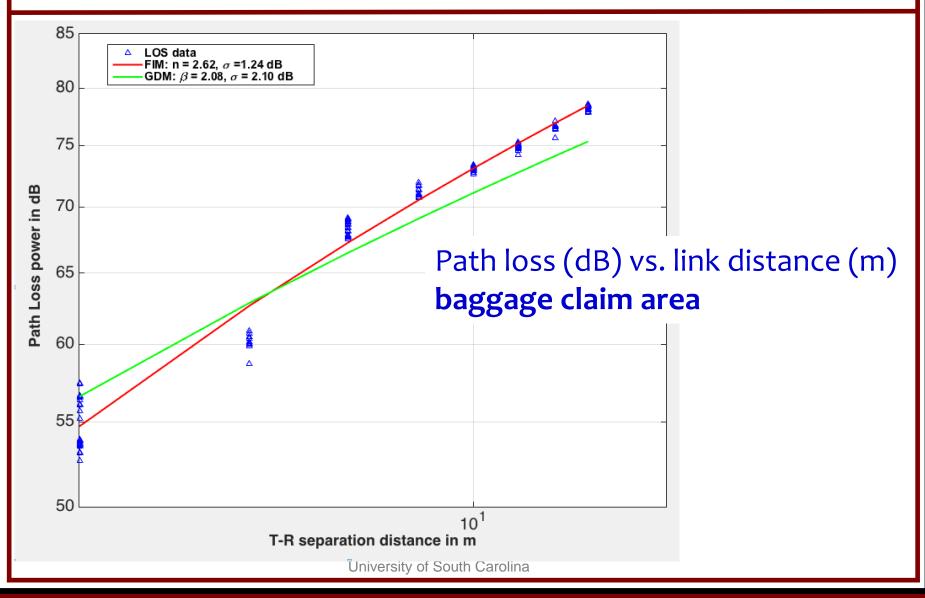
- Tri-band system: VHF (118-137 MHz), L-band (960-1164 MHz), & C-band (5.03-5.091 GHz)
- FBMC mod., AG channel: 2-ray, wet ground

Task 3: Analysis/Design Framework

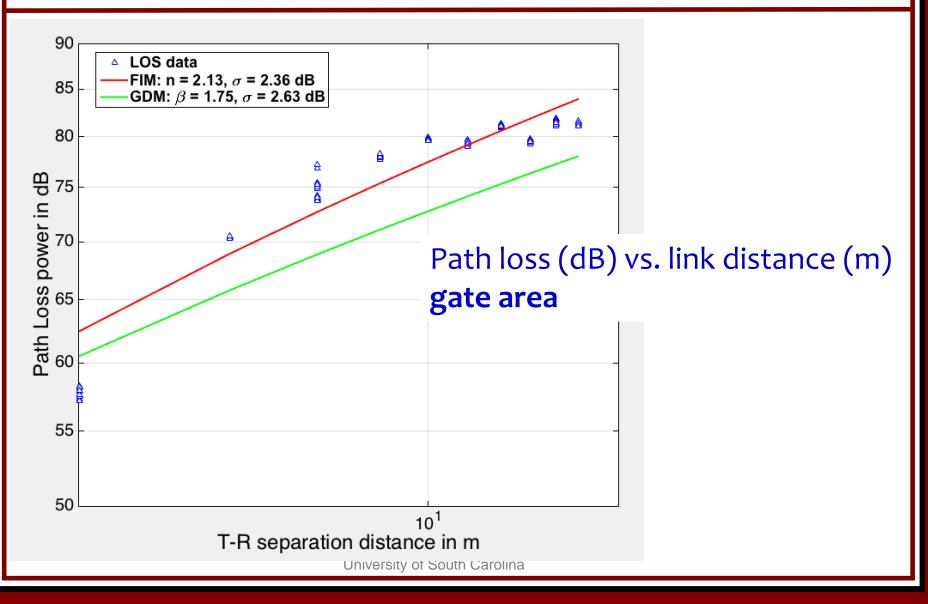

- Adaptive Aviation Waveforms
 - WithIN band, per delay/Doppler
 - INTER-band, per interference, data rate...

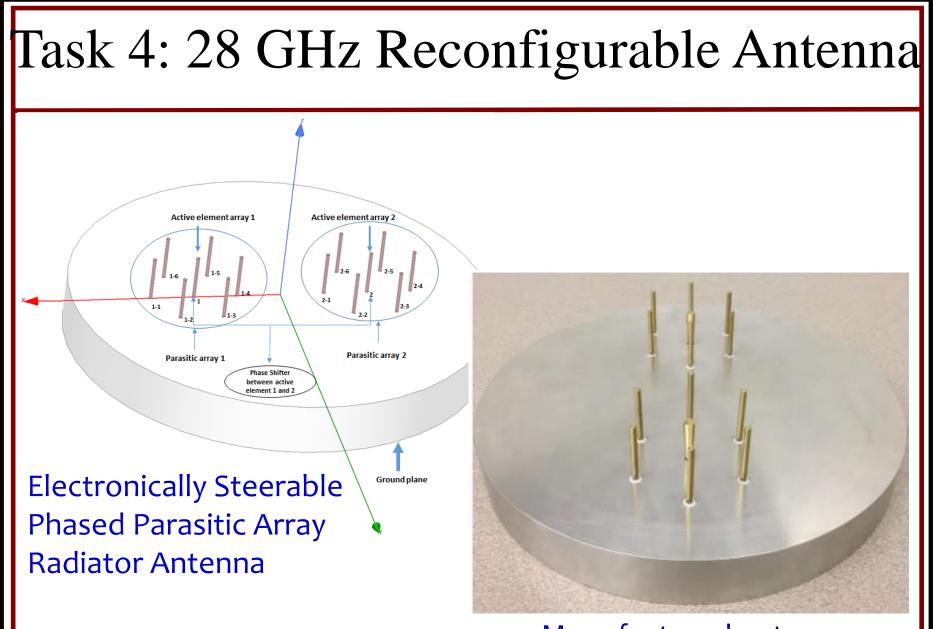
Task 4

- Millimeter Wave Systems for Airports & Short-Range Aviation Communications
 - Measure & model channels
 - Validate prototype airport mmWave systems

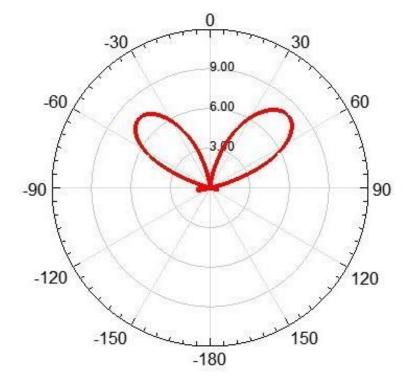


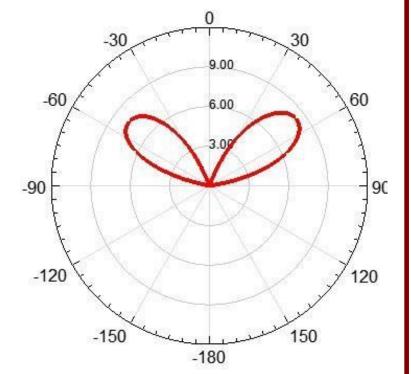
Task 4: Channel Measurement @BOI


- 60 GHz & 2.4
 GHz channel
 measurement
 campaign at
 Boise
 International
 Airport
- 2x2 MIMO channel measurement to follow soon



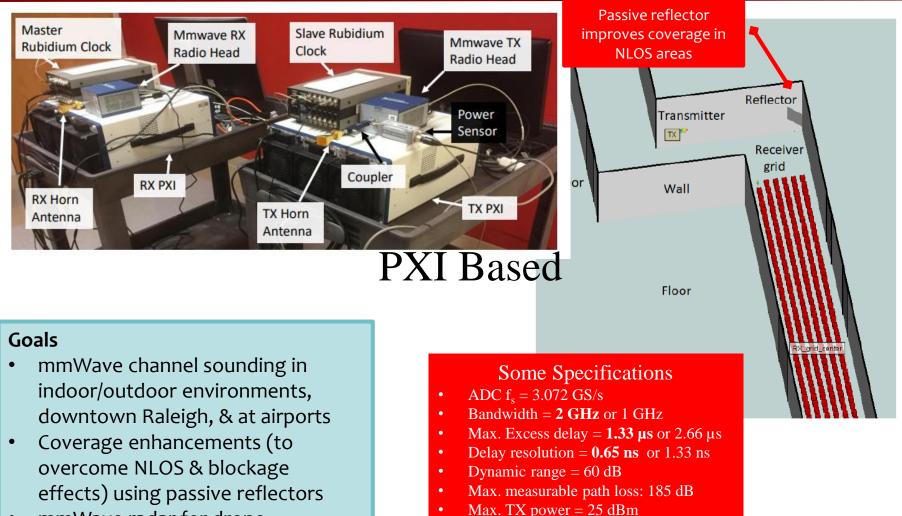
Task 4: 60 GHz BOI Airport Results


Task 4: 60 GHz Airport Results (2)



Manufactured antenna

Task 4: 28 GHz Antenna Design

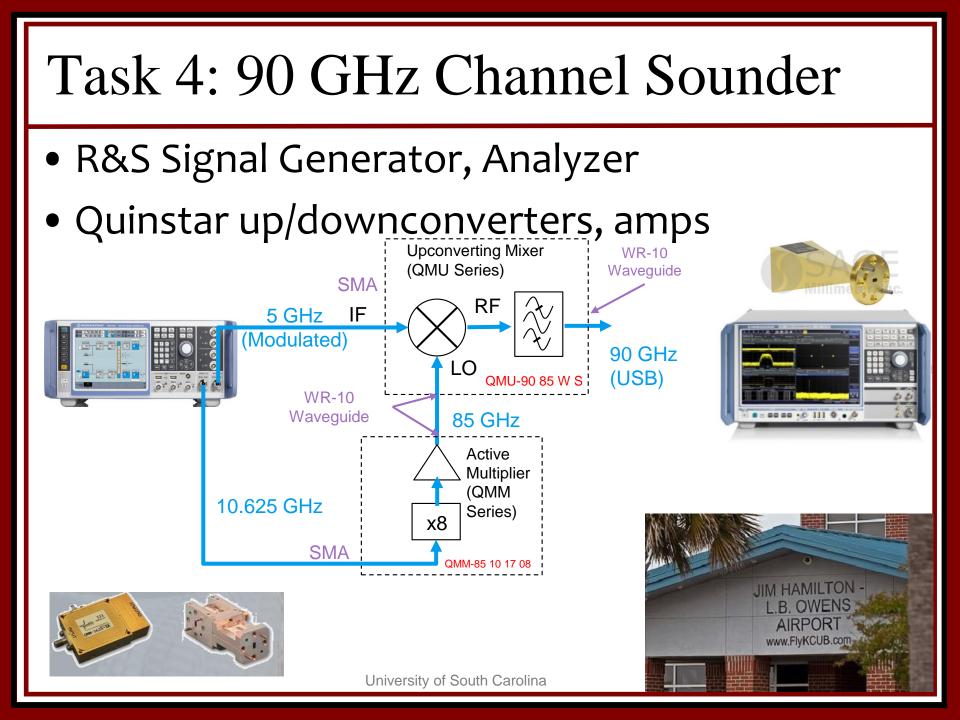


Dual beam at ± 45 degree

Dual beam at ± 50 degree

Designed antenna's radiation pattern generating two radiation lobes with one RF chain

Task 4: 28 GHz Channel Sounder


Horn antenna gain = 17 dBi

HPBW = 26° elevation, 24° azimuth

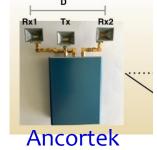
 mmWave radar for drone detection/tracking

rsity of S

30

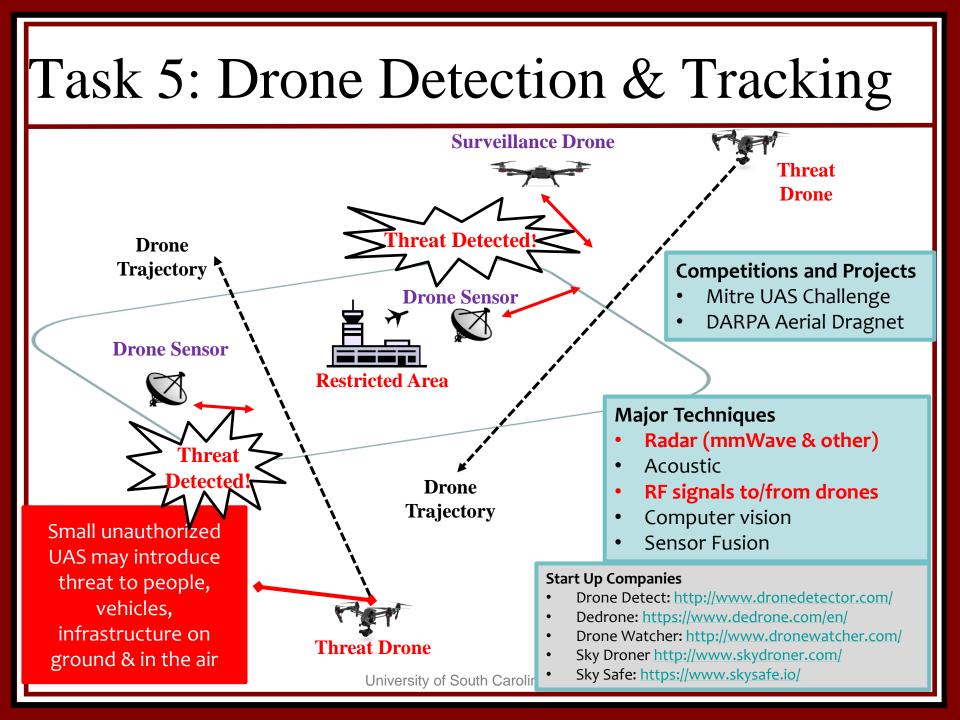
NC STATE UNIVERSITY

 Detection, Localization, & Tracking of Unauthorized UAS


 Develop novel unauthorized UAS detection/ localization techniques to detect/track any unauthorized UAS that enters any restricted zone

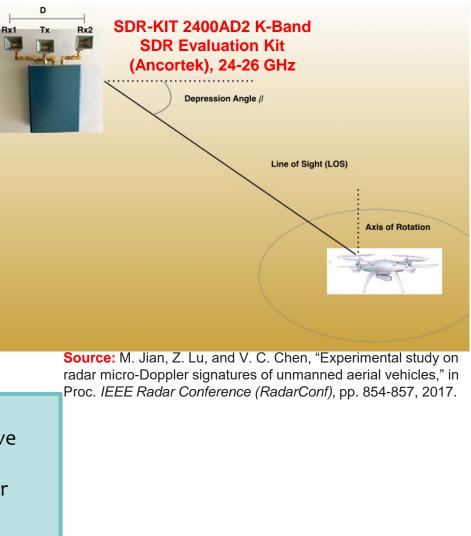
Task 5: Major Goals

 Ancortek & NI PXI based mmWave radar experiments for drone detection/classification/tracking

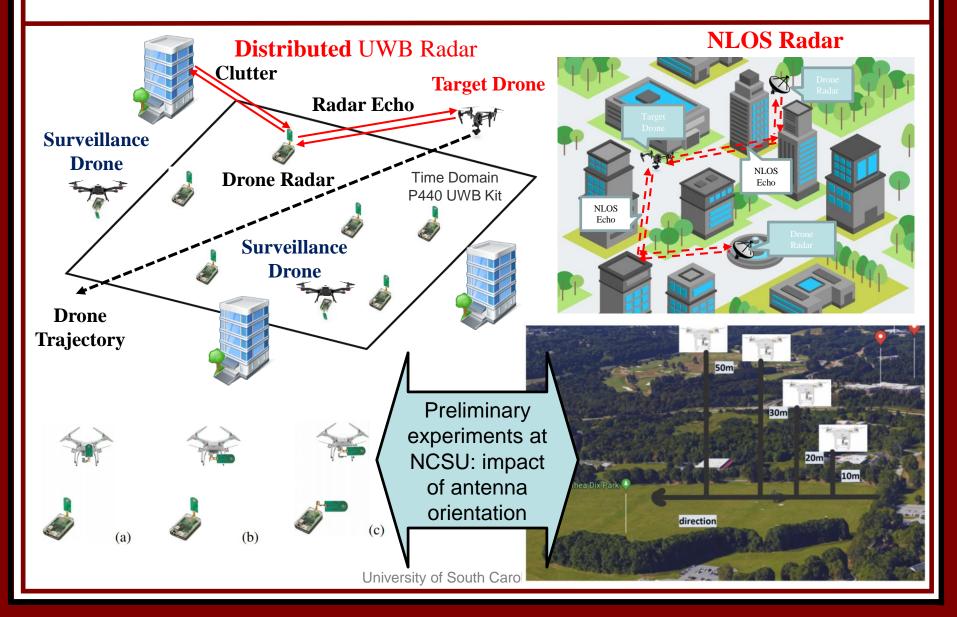

• UWB localization & radar experiments w/distributed UWB sensors

Phantom 3 Drone

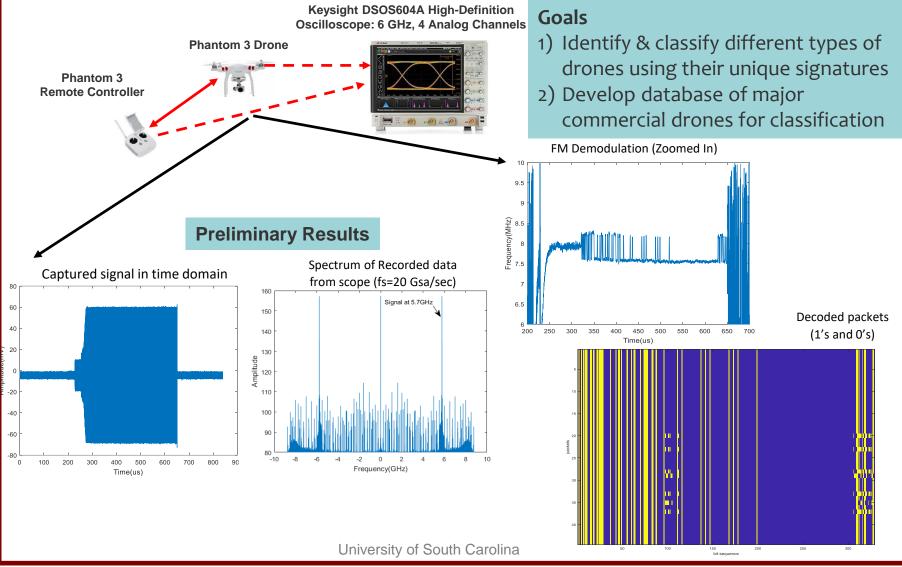
- Capture payload/control signals from major commercial drones w/wideband o-scopes & USRPs, develop database for drone detection
- Receding horizon drone tracking w/intermittent observations at surveillance drones University of South Carolina

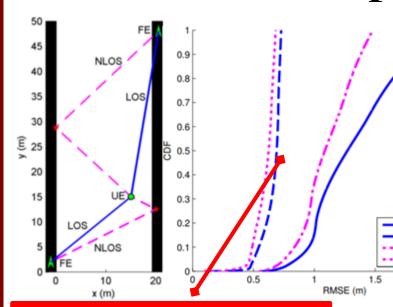

mmWave 24-26 GHz Ancortek Radar

lina


- Large bandwidth in mmWave spectrum enables good range resolution, possibility to extract unique micro-Doppler drone signature
- Compared to visible/infrared based techniques, less susceptible to rain, fog, obstacles

Goals


- Drone detection/tracking based on mmWave radar returns
- Drone classification based on micro-doppler signatures
- Limitation: short range due to low power


UWB for Detecting/Tracking Drones

Machine Learning Based UAV Detection/ Classification via UAV RF Radiated Signals

mmWave Localization & Tracking w/ **Environment** Mapping

Goals 1) Localize target user using angle of arrival/departure & ToA of narrow mmWave beams, various LOS/NLOS directions 2) Estimate scatterer locations as well in parallel 3) Extensions to user/inventory tracking at airports, as well as accurate localization/tracking of drones

- Two mmWave fixed equipment (FE) to track user equipment (UE) using LOS/NLOS beams in urban canyon environment
- Radio environmental mapping (REM) assumes scatterer locations perfectly known

University of South Carolina

settings (2 FEs)

28 GHz (No REM 28 GHz (REM)

73 GHz (No REM) 73 GHz (REM)

Simultaneous UE

localization &

environment

urban corner

mapping

2.5

Task 6: Simulation Assessment

- Fast-time simulation assesses impact of future CNS/ATM
- Operational scenarios describe quantity, distribution, & types of vehicles operating in the NAS

 ATCorp's Probabilistic NAS Platform (PNP) models enroute, terminal, & airport surface operations & is capable of performing both regional & NAS-Wide simulations

Task 6: Simulation Assessment

- Operational scenarios drive new PNP modeling capabilities
- Leverage NASA/FAA work in modeling & simulation of future NAS concepts, technologies
 - Future Traffic Scenarios
 - Future Airport Capacities
 - Future Airspace Capacities

We have had multiple discussions w/NASA /FAA about leveraging prior work

٠

- Thank you to Confesor
 Santiago, Kee Palopo,
 & Jim Murphy, NASA
 Ames
- Thank you to Joe Post,
 Kimberly Noonan, &
 Sanjiv Shresta at FAA

Next...

• Task 1: incorporate survey data \rightarrow final ConOps

- Task 2: finish quantification of current system gaps, initial eval of new candidate comm tech's
- Task 3: develop quantitative multi-band/mode eval framework; analyses, simulations, SDR experiments...

Next...(2)

 Task 4: + mmWave airport chan. measurements, model development; mmWave link/network performance analyses, simulations...

- Task 5: mmWave radar drone detect/tracking; drone signature eval
- Task 6: follow Task 1, gather information

University of Sou

Long Term Outlook

- Deployment!
 - Potential field trials for various systems
 - Most likely airport settings
- Standards
 - Inputs to various standards bodies
 - RTCA, 5GmmWave Chan Alliance, IEEE...
- Potential/New collaborations
 - Academia: ULI group at Arizona St. U., VT, GT...
 - Industry
 - NASA!

Information fusion for real-time national air transportation system prognostics under uncertainty

Co-Is: Aditi Chattopadhyay, Nancy Cooke, Jingrui He, Mary Niemczyk, Pingbo Tang, Lei Ying Arizona State University

University of South Carolina

Domain knowledge-based air-ground NAS traffic modeling and simulation
 Efficient large-scale dynamic system simulation
 Elig data analytics for risk identification and prediction
 Multi-isev and multi-table learning for crowd-sourced information
 Multi-iseven limit state and astery measure

43

Conclusion

- HSCNA project has 6 Tasks for Safe, Efficient Growth in Global Operations
 - ConOps
 - Comm System Assessment & Gaps
 - MultiBand/MultiMode link/net designs
 - mmWave airport & UAS links
 - Unauthorized UAS detection

In a Few Years

