USAF NEEDS/DIFFERENCES, CURRENT RESEARCH & IDENTIFIED KNOWLEDGE GAPS w/ FUTURE EVTOL SYSTEMS

Dr. Casey W. Pirnstill, AFRL/711th HPW/RHBFD
Biomedical Impact of Flight Branch - Biodynamics Section

Mr. Nathan Wright, AFLCMC/WNU
Aircrew Egress & Survival Branch

Brief Date: JAN-19-2021
Outline

I. USAF Research & Acquisition Areas of Interest
 ❖ Who We Are!
 ✓ Research Focus & Unique Capabilities

II. Re-evaluate Current Crash Environment For EVTOL Certification Development
 ❖ Rotorcraft Crashworthiness, Mishap History Summary (Military Aviation)
 ❖ Define eVTOL Design Configurations & How Systems Will Be Utilized (Mission Envelope)
 ❖ Understand eVTOL Crash Differences Compared W/ Legacy Aircraft (FAR 23)/Rotary (FAR 27) Mishaps
 ❖ eVTOL Operational Expectations & Crashworthiness Moving Forward
 ✓ Evaluate AW Using Combo (Aircraft/Rotorcraft) Requirements

III. The Gaps: Current USAF Airworthiness Certification Processes (Transport Aircrafts & Rotorcraft)

IV. Differences In USAF & FAA AW Certification Process: (Transport Aircrafts/Rotorcraft)
 ❖ USAF AW Process Risk Based & FAA AW Process (Pass/Fail)
 ❖ Lack Injury Risk Curves, Pass/Fail Criteria For Most FAA Criteria Locations
 ❖ FAA Limited Anthro Range, Include, 50th% Hybrid III Aero/FAA/ES-II: All 50th% Occupants
 ✓ Need valid injury risk curves, across full anthropometric range (5th% Female thru 95th% Male)

V. Examples Of Recent Seat AW Programs & Resulting Issues Based Existing STD Gaps
 ❖ Military Rotorcraft Seating
 ❖ C-17/C-130; Negative Pressure Conex/Conex Light (NPC/NPCL) Side-Facing Troop Seat
As part of a research effort at the request of AMC & AFOTEC, Biodynamics Team conducted impact assessment of C-17 side-facing troop seats for integration into Negatively Pressurized Conex (NPC) model, which was developed to support COVID-19 relief efforts by transporting infectious, ambulatory & litter patients in global operations.
Why AFRL Aircrew Biodynamics & Protection Team?

- Expertise:

- Unique DoD Facility:

Resources
- **Civilians**: 12
- **Military**: 8
- **Contractors**: 15
Big Picture Questions:

- Do current USAF injury risk requirements, identified in airworthiness standards, continue to improve occupant protection in Aircraft, Rotorcraft & VTOL seat design applications?

- How do we define considerations for survivable in USAF Operational Mishaps & is definition same across Gov’t agencies?

- Is equivalent occupant protection expected in VTOL seating design certification processes, using existing requirements?

- What crash profiles should be use to assess VTOL occupant safety in seating platforms? *(combined rotorcraft/aircraft crash profiles)*

- How do we further improve mishap survivability for cabin occupants in future seating system designs?

- Do current USAF crash survivability requirements allow equivalent injury risk identification across expected occupant anthropometric ranges?
Overarching Model

- Laboratory (Controlled Performance)
- Operational Mishap Data (Context)
- Injury Criteria (Objective Metrics)
Evaluate Crash Safety Envelope: Development Of Certification Requirements For VTOL Occupant Seating Systems
Rotary Wing (Army) Operational Mishap Data

TOP 10 MAJOR AND FATAL INJURIES:
1. Head
2. Chest
3. Lower Extremities
4. Spine
5. Abdomen
6. Upper Extremities
7. Pelvis
8. Multi-trauma
9. Neck
10. Not Spec

* Rate of injury for cabin occupants significantly greater than pilot/copilot

*Potentially fixed w/5pt restraint

Army UH-60 Operational Mishap Data

"Moderate" contusions, lacerations, abrasions in any area(s) of the body. Sprains of the shoulders or principal articulations of the extremities. Uncomplicated, simple or green-stick fractures of extremities, jaw, or malar structures. Concussion as evidenced by loss of consciousness not exceeding 5 minutes, without evidence of other intracranial injury.

Compound or comminuted fractures:

Simple fractures of vertebral bodies:

Skull fracture:

Loss of consciousness:

Eiband results correlate w/ operational mishap injury types & severities
Airworthiness Process & Gaps In Seat Safety Design Requirements: USAF Aircraft & Rotorcraft Occupant Seating Crashworthiness Survivability Standards
GAP - VTOL Crash Profile Vs. Historical Mishaps: Aircraft & Rotorcraft (FAR 23, 25 & 27)

- Anticipated Difference In DoD Operational Mishap Data, Existing Injury Outcomes & Crashworthiness Criteria (Aircraft/Rotary) Vs. VTOL Application
 - Need to **Understand & Define** eVTOL operational expectations
 - Determine if existing crash scenarios & future VTOL applications are representative
 - Define crashworthiness criteria moving forward, accommodating VTOL occupant seat safety in addition to Aircraft & Rotorcraft Vehicles

 - Success of approach dependent on similarity W/ defined & expected operational envelope in VTOL system as compared to historical Aircraft & Rotorcraft crash scenario defined based on operational mishap data & strong understanding of the crash profile
Do Measured Crash Events Match FAA & USAF eVTOL Expectations?

- **Transport Aircraft Seating:**
 - FAR 25.562: *Emergency Landing Dynamics Conditions*
 - FAR 25.785: *Seats, Berths, Safety Belts & Harnesses*
 - FAA PS-ANM-25-03-R1: *Technical Criteria Approving Side-Facing Seats*
 - FAR 49.571.208 & 49.571.214: *Criteria Crash Protection*
 - FAR 49.572: ATDs

- **Rotorcraft Seating:**
 - FAR 27/FAR 29 (Normal/Transport): *AW Standards*
 - 27.561, 27.785 & 27.1413
 - 29.561, 29.785 & 29.1413
 - FAR 23: 23.561, 23.785 & 23.1413
 - FAR 91: 91.107 & 91.203

Do Existing Requirements & STDs Reflect eVTOL Crashes Sufficiently?

- **Transport Aircraft & Rotorcraft Seating:**
 - MIL-HDBK-516C
 - SAE Standard AS8049 *w/expanded population*

- **Rotorcraft Seating:**
 - MIL-STD-85510(AS)
 - MIL-S-58095(AS)
 - JSSG-2010-7

GAP - FAA & USAF Crashworthiness Certification Processes

Risk-Based Certification

- Rigor of Certification follows Risk-Based Structure
- Aircraft, and Intended Use Considered

THE AIR FORCE RESEARCH LABORATORY

DISTRIBUTION A: Approved for public release; distribution unlimited (AFRL-2020-0580)
GAP - Current FAA & USAF Crashworthiness Differences:
Should VTOL injury be assessed as Rotorcraft or Transport Aircraft?

FAA Airworthiness Process (Pass/Fail)
- FAA: Most injury locations lack risk curves (Pass/Fail)
- Structural Assessment (Pass/Fail)
- Lap Belt remains on pelvis? (Pass/Fail)
- Torso rotation remains <40°? (Pass/Fail)
- Upper restraint remains on shoulders? (Pass/Fail)
- Occupant motion sufficiently restrained? (Pass/Fail)

USAF Airworthiness Process (Risk Based)
- Hard landing/crash AIS >2 % injury risk @ associated injury mechanism/location
- Combined total occupant injury risk (effect on EGRESS)
- Assess structure against 95th% male ATD (~245lb), LARD

<table>
<thead>
<tr>
<th>FAA Criteria</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelvis / Lumbar Loads (lbs)</td>
<td>1,500</td>
</tr>
<tr>
<td>Head Injury Criteria (HIC)</td>
<td>700</td>
</tr>
<tr>
<td>Resultant Shoulder Load (lbs)</td>
<td>1,850</td>
</tr>
<tr>
<td>L/R Shoulder Strap Loads (lbs)</td>
<td>1,750</td>
</tr>
<tr>
<td>Left / right femur bending angle</td>
<td>< 35°</td>
</tr>
<tr>
<td>Seat must remain attached to structure</td>
<td>P/F</td>
</tr>
<tr>
<td>If seat is damaged, it must not impede egress</td>
<td>P/S</td>
</tr>
</tbody>
</table>

Figure 6 - Type A-T seat/restraint system dynamic tests
Valid Injury Probability Criteria Over Full Anthro Range: Female 5th% Through 95th% Male

- Current FAA Approved ATDs In FWD/AFT Facing Rotorcraft & Transport Airplane Seats Include: Hybrid III 50th Aero ATD & FAA Straight Spine 50th ATD

- Current FAA Approved ATDs In Side-Facing Rotorcraft & Transport Airplane Seats Include: ES-II 50th Percentile Male ATD

- USAF Requires Injury Criteria Valid Across Full Anthro Range (LOIS - LARD) W/ Injury Probability Curves In Future VTOL Applications
 - Initially, combine Transport/Rotorcraft airworthiness standards into new operational case, unless VTOL crash profiles expected to drastically vary from Aircraft/Rotorcraft cases

 - AF requires injury risk probability estimates @ relevant anatomic locations for all anticipated injury methods
 - FAA Crashworthiness Certification Criteria historically imposes (Pass/Fail) test limits which must not be exceeded for acceptability: Specified acceptable safety metrics do not have associated injury risk probability estimates assigned during required crash test loading scenarios
Examples For Crashworthiness Assessments of Occupant Seat Survivability
Personnel Survival Chain

Seat Dependent
- Seat Strength
- Adequate Restraint
- Seat Performance
 - Energy Attenuation
 - Flail Reduction

Aircraft Dependent
- Seat A/C Interface
- Survivable Space

Egress → Survival
Side-Facing Seats

CV-22 Seat

C-17 Seat
Example 1: Military Rotorcraft Seating
Background

- Purpose to evaluate current and prototype rotorcraft seat survivability across USAF anthro population
- Testing Partially Based On MIL-STD-85510(AS) & Legacy Seat Testing
- Impact Testing Using AFRL Horizontal Impact Accelerator (HIA) & Vertical Deceleration Tower (VDT)
- Seats from H-60, V-22, CH-53, and prototypes tested
Orientations, accel levels based on ~1960s mishap data (Crash Survival Design Guide)
Instrumentation

- **Lightest Occupant In Service (LOIS) 5th% Female (~107lb)**
- **Large Anthropomorphic Research Device (LARD) 98th% Male (~245lb)**
- **Manikin Instrumentation:**
 - Head accelerations (linear & angular)
 - Upper/Neck forces & moments
 - Lumbar/Chest accelerations
 - Lumbar forces & moments

- **Seat Mount Forces**
- **Seat Acceleration**

<table>
<thead>
<tr>
<th></th>
<th>LOIS (lb)</th>
<th>LARD (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Torso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manikin</td>
<td>45.3</td>
<td>108.8</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>1.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Cables</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Lower Torso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manikin w/Abdomen</td>
<td>47</td>
<td>118.6</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>AFE</td>
<td>10.6</td>
<td>15.6</td>
</tr>
<tr>
<td>Total</td>
<td>107.5</td>
<td>247.8</td>
</tr>
</tbody>
</table>

*Side-facing program
General Test Matrix (From Side-facing study)

<table>
<thead>
<tr>
<th>Cell</th>
<th>Orientation</th>
<th>Acceleration (G)</th>
<th>Delta V (ft/s)</th>
<th>Rise Time (ms)</th>
<th>Manikin</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CV</td>
<td>24</td>
<td>40</td>
<td>30</td>
<td>LOIS</td>
</tr>
<tr>
<td>B</td>
<td>CV</td>
<td>30</td>
<td>48</td>
<td>26</td>
<td>LOIS</td>
</tr>
<tr>
<td>C</td>
<td>CV</td>
<td>24</td>
<td>40</td>
<td>30</td>
<td>LARD</td>
</tr>
<tr>
<td>D</td>
<td>CV</td>
<td>30</td>
<td>48</td>
<td>25</td>
<td>LARD</td>
</tr>
<tr>
<td>E</td>
<td>CH</td>
<td>18</td>
<td>46</td>
<td>78</td>
<td>LARD</td>
</tr>
<tr>
<td>F</td>
<td>CH</td>
<td>24</td>
<td>53</td>
<td>62</td>
<td>LARD</td>
</tr>
<tr>
<td>G</td>
<td>PV</td>
<td>15</td>
<td>32</td>
<td>35</td>
<td>LOIS</td>
</tr>
<tr>
<td>H</td>
<td>PV</td>
<td>34</td>
<td>46</td>
<td>26</td>
<td>LOIS</td>
</tr>
<tr>
<td>I</td>
<td>PV</td>
<td>15</td>
<td>32</td>
<td>35</td>
<td>LARD</td>
</tr>
<tr>
<td>J</td>
<td>PV</td>
<td>34</td>
<td>46</td>
<td>26</td>
<td>LARD</td>
</tr>
</tbody>
</table>

*Orientations/levels based on MIL-S-85510(AS) & H-60A/L acceptance testing, though do not strictly adhere to standards

Vertical Tower Tests

Horizontal Track Tests
Combined Horizontal Video: CV-22 Seat, LARD, 24.36G, 53.02ft/s, 62.3ms Rise Time
Combined Vertical Video: CV-22 Seat, LARD, 29.71G, 48.93ft/s, 18.4ms
Data Analysis

- Seat Structural Strength
- Injury Criteria Primarily From Full Spectrum Crashworthiness Report (2011); Other Historical Criteria Used For Comparison

<table>
<thead>
<tr>
<th></th>
<th>Recommended by FSC</th>
<th>Criteria Used</th>
<th>CV</th>
<th>PV</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>HIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck</td>
<td>Nij</td>
<td>Nij</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chest</td>
<td>Belt Loads</td>
<td>Chest Accel and Belt Loads</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lumbar</td>
<td>Peak Loads</td>
<td>Peak Loads and DRlz</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Body</td>
<td></td>
<td>Eiband 85510</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Example 2: Negatively Pressurized Conex/Conex Light (NPC/NPCL)
Assessment Of Side-Facing Troop Seat: Negatively Pressurized Conex/Conex Light (NPC/NPCL)

PLAN:
- NPC leveraged Other Transactional Authority (OTA) agreement to rapidly procure prototype NPC system. Design based upon concept of modified 40-foot ISO container (Conex) w/ negative pressure system to provide max possible capacity on C-17 to transport diagnosed/symptomatic passengers & patients, while also mitigating risk to aircrew & aeromedical evacuations specialists.

HOW:
- NPC designed to be safe-to-fly on C-17, maximize passenger capability w/ a configurable interior (ambulatory & litter) & meet requirements of USTRANSCOM JUON “Need for High Capacity Airlift of COVID-19 Infected Passengers” & NPCL designed to be safe-to-fly on C-130’s & smaller cargo aircrafts.
- Part of OUE is impact assessment of proposed seat, to be used by medical crew while in NPC.

NPC

NPC has two areas, anteroom & patient area, separated by steel door. Patients loaded into NPC through patient doors & remain in patient area, outfitted w/ two restrooms, for duration of flight. Aeromedical crew enter & exit through anteroom, where they can doff & decon-equipment. At rear of Conex is redundant blower, creating negative pressure environment, driving laminar flow from anteroom into patient area. Design considerations incorporate communications, power, back-up, aeromedical requirements, transportability, modularity, configurability & more.
Assessment Of Side-Facing Troop Seat: Negatively Pressurized Conex & Conex Light (NPC/NPCL)

HOW:

- **AS8049** requirement for vertical impact conducted on AFRL Vertical Deceleration Tower (VDT)

- **Vertical Impact Requirements:**
 - Seat Upright Side-Facing W/ Aircraft Rearward Pitch Angle Of 30°
 - Peak Impact Acceleration ≥ 14 G
 - Time-To-Peak Acceleration ≤ 80 ms
 - Velocity Change ≥ 35 ft/s

- VDT facility successfully met required impact conditions

- **AS8049** Impact Requirements/Results:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>[25th Percentile Hybrid III]</th>
<th>Limit</th>
<th>Test</th>
<th>Prob. Int. ASQ2+ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Analysis, Seat-Panel Structure, Broke, Resulting In ABDressed downward stuck inside Seat-Panel Frame: FA</td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Velocity (ft/sec)</td>
<td>>35</td>
<td>35</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Acceleration (G)</td>
<td>>14</td>
<td>14</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Lumbar Load (lbs)</td>
<td>3,250</td>
<td>3,250</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Head Injury Criteria (HIC15)</td>
<td>700</td>
<td>700</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Femur Load (lbs)</td>
<td>2,750</td>
<td>0</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Neck Injury Criteria (Nij)</td>
<td>0.5</td>
<td>0.107</td>
<td>11.5%</td>
<td></td>
</tr>
<tr>
<td>Resultant Shoulder Load (lbs)</td>
<td>1,850</td>
<td>450</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

- **Pass**
- **Fail**
- **Marginal**
- **Cannot Assess**
Assessment Of Side-Facing Troop Seat: Negatively Pressurized Conex/Conex Light (NPC/NPCL)

HOW:

- **AS8049** requirement for horizontal impact conducted on AFRL Horizontal Impulse Accelerator (HIA)

Horizontal Impact Requirements:

- Seat Upright W/ Yaw Angle Of 0°
- Peak Impact Acceleration ≥ 16 G
- Time-To-Peak Acceleration ≤ 90 ms
- Velocity Change ≥ 44 ft/s

- HIA facility successfully met required impact conditions

- **AS8049** Impact Requirements/Results:
Recognized Gaps:
- VTOL Crash Profile Vs. Historical Mishaps
- FAA & USAF Crashworthiness Certification Processes
- Current FAA & USAF Crashworthiness Differences
- Limited ATD Range

Recommendations:

- Define eVTOL operational crash profiles. "How will we crash?"
- Develop definitive injury criteria for MIL ATDs
- Better align FAA and MIL crashworthiness criteria
 - Define appropriate injury metrics for operational crash environment
 - Establish acceptable injury severity level probability during a mishap
Questions?