

AHS International *Transformative Vertical Flight Concepts* NASA Ames August 4, 2015

Michael Sinkula Co-Founder, Envia Systems

Moore's Law

Moore's Law in batteries?

Power versus Energy: Mature Technology

Source: Lawrence Berkeley National Laboratory

- Batteries are all about compromise and lithium ion is the primary choice for most applications
- No one-size-fits-all battery chemistry, even within the lithium ion category
- Cycle life, cost, and safety are also important considerations

Power versus Energy: Next Gen Technology

Can next gen technology compete with Li ion?

Lithium Sulfur

- Pro: High gravimetric capacity, low cost
- During discharge lithium polysulfides tend to dissolve from the cathode in the electrolytes and react with the lithium anode, decreasing cycle life
- Volume expansion of sulfur electrode upon repeated cycling
- Safety concerns

Lithium Air

- Pro: Very high theoretical energy density
- Power is lower than lithium ion
- Cycle life issues as a result of dendrite formation, volume expansion, lithium peroxide byproducts
- Safety concerns

Envia's Approach

HCMR[™] Cathode Phase Diagram

Electrodes with Carbon Fibers

Si-based Anodes

Envia Anode Strategy

Si needs to replace Gr-based anodes to enable high energy density cells (>300Wh/Kg)

Optimization of Si-based anodes

Envia develops proprietary Si anodes for automotive & consumer applications by using commercially available materials and applying its electrode formulation, processing, and coatings know-how

Discontinuity of Industry Trend

And batteries used in many mass market UAVs and EVs are lower energy density than the State of the Art trend

UAV cell

UAV cell Rate Capability

Current drone/UAV projects

- High altitude
 - Applications aimed at bring network capability or communications to rural areas without strong connectivity
 - Low rate applications so Wh/kg is by far the most important factor
- Low altitude
 - Delivery, leisure, or connectivity purposes
 - More complex energy storage needs
 - Smaller battery, so higher power needs (per battery) especially for take off or windy conditions
 - Hybrid battery options

UAV battery Considerations

- Energy density
 - The most important metric to increase run time/distance
 - Weight reduction causes a non-linear reduction in power requirements
- Power density
 - Very application dependent
- Cycle life
 - Typically high power batteries have better cycle life (but energy is much lower so cumulative wh may be similar to high energy cells
- Safety
- Cost
 - Increasing Wh/kg to reduce \$/kWh is Envia's strategy to reduce total pack cost but there are other strategies

Envia Product Roadmap

- Energy density by application is determined by other performance needs like cycle life and power
- Critical that cells are designed with an application in mind

Cells for Electric Vehicles

EV Cell	Metrics
Capacity	40 Ah
Nominal Voltage	3.74 V
Specific Energy @ 1C	215 Wh/Kg
Power Density (EVPC Test) @80% DOD in 1C-30 Sec test	3300 W/L
Cycle Life (1C/1C) @ 80 % DOD	>1000

PHEV Cell	Metrics
Capacity	27 Ah
Nominal Voltage	3.74 V
Specific Energy @ 1C	180 Wh/Kg
Power Density (HPPC Test) @80% DOD in 5C-17 Sec test	4900 W/L
Cycle Life (1C/2C) @ 80 % DOD	>4500

PHEV Cell Cycling

Summary

- Advanced high energy density lithium battery technology
 - Develop custom high energy electrode materials and cells
 - 350 Wh/kg cell for UAV applications
- Leveraging government grants
 - USABC (\$7.7M contract)
 - EERE ABR (\$3.8M contract): General Motors, LBNL, ORNL
- Addressing key markets automotive, consumer, UAV
 - Beta stage products in both automotive and consumer electronics markets
 - UAV beta stage product by Q4 2015

