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Need for Innovation 
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• Current State of Technology 
– Thermal expansion and contraction of entire shroud/case (Active 

Case Cooling) 
– Slow response and scheduled modulation 

• huge thermal mass with seal segments directly mounted on engine 
casing,  

• ineffective heating or cooling of the shroud via convection between 
shroud surfaces and air.   

• No asymmetry modulation 

• Prior Research 
– Mechanical/Smart materials/Hydraulic/Pneumatic 
– External to engine case/shrouds and moving parts 
– Incompatibility with environment for HPT 

• Need for Innovation 
– Fast Response Tip Clearance Modulation Mechanism  
– Light weight, compact and environmental compatible to HPT 
– Integral to shroud-case structure w/o moving parts  

 
 

DeCastro, etc, 2005 
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Impact of Innovation 

A Fast Response Tip Clearance Modulation 
•Enable turbine tip clearance  set to “optimal” 
during longest flight segment (cruise) 
•Reduce specific fuel burn (SFC) and exhaust gas 
temperature (EGT) 

•0.01” in turbine blade tip clearance equals: 
–1 %  in SFC   
–10° C in EGT 

•Low CO2  emission 
•More time on wing 
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Innovation-Active Truss Modulation  
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Approach: 
• Variable geometry active truss  for tip clearance modulation 
• Truss actuation by thermally induced strains 
• Low thermal mass and large surface area for heat exchange 
Benefits:   
• Sustain beauties of thermal expansion approach 
• Fast Response-one order of magnitude improvement 
• Light weight and Integral to shroud-case structure 
• Asymmetric and symmetry clearance modulation 
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Active Truss Modulation (ATM)  
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Engine Case  Truss Actuators Tip Clearance 

Interlock 
Tabs 

Segmented 
Shrouds 

Cooling Air Pressure Differential 

Electric 
Connection 
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Dual Tetrahedron Dual Pyramid 

Parallel Theta Ring (2D) 

Prime Movers  

Core Elements of Truss Actuation  

•Actuation by linear thermal expansion  
•Structural amplification of displacement 
•Multiple inputs and single output 
actuation 
•Low thermal mass and volume density 
(<0.1) 
•One order of magnitude faster response 
than engine case cooling (ACC)  
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Principle of Truss Actuation   
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•Displacement 
•Stiffness 
•Response  
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Principle of Truss Actuation   

Member buckling (L/r slenderness) 
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Design of Tetrahedron Truss  
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Design of Tetrahedron Truss 
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∆ T=300 °F applied to 1 diag. member  Thermal expansion field 

FEM Model 
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Design of Tetrahedron Truss 

∆ T=300 °F applied to 3 diag.  members  Thermal expansion field 
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FEM Model (cont’d) 
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Thermal Expansion  

•Linear summation of thermal expansion by 
each member  
•Max principal stress σmax<< σyield & σcr 
under ∆P= 180 psi 
 

Design of Tetrahedron Truss 

∆ T=300 °F applied to 3 horizontal members  

Deformation  field under load 
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Electric Activation of Truss Matrix    

14 

Direct resistive heating topologies 
•Heating each member individually 
•Group  collective heating (base and diagonal) 
•Combination of series and parallel heating 
•Intelligent heating-Wheatstone bridge effect  
Challenge: Large current and low voltage 

V+ V- 

I=0 
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•Cell to cell series 
connection 
•Full actuation 
•Fail safe  
•Embedded wiring in 
case 
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V+ 

V- 

V+ 

V- 

Series connection and partial grouping (2/3 activation)  

Parallel/series connection and partial grouping (1/2 activation)  
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Electric Activation of Truss Matrix    
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Air Cooling Modeling 
• Steady state heating/cooling  
• Transient cooling 
 

inlet 

outlet 
periodic 

Top wall 

Bottom wall 

truss 

Air Cooling- Activation and Deactivation    

Remain activated, 
electric power on 

Deactivated, electric 
power off 
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•Six members being electrically heated at 899 ºC (1650°F)  
while being air cooled 
•Three members being air cooled to 732ºC (1350°F) 

To maintain temperature difference while electrically heated   

Member temperature 
contours  

Air flow (m/s) 0.1 0.1 10 

Temperature difference 
between heated and 
unheated wires (°C) 

100  110 180 

Heat dissipation rate 
(W) 7.04 6.9 42.2 

Air Cooling- Activation Mode 
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Member temperature change during cool-down with air velocity of 20 m/s 

T_low: 732C (1350F) 

12.2 s 

0.14 s 

2 s 

0.84 s 

6 s 

13.5s 

Air Cooling-Deactivation Mode 

To cool to ambient  temperature after electrical power turn off   
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System Design Case  

Clearance 
modulation

, in 
 

Max. 
Deflection 
@ 2200, 

lbf 

No of 
actuator

s per 
shroud 

No. of 
shroud 

segments  
 

Shroud 
surface 

area,  
in^2  

Headroom 
between 
case and 

shroud, in  

Air temp. 
between case 

and shroud  
 º F   

Deactivation 
time,  

s 

Power  to 
maintain 

activated , 
w 

Nominal 
requirement* 

0.05~0.1  N/A 1 20 12  2  1300 N/A N/A 
 

Tetrahedron  
truss cell 

0.035  0.005 28 20 
 

12  
 

1.5  1650 
 

13 1344 

*DeCastro, 2005 
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Design Parameters 
20 truss cells per shroud structurally in parallel 

electrically in series 

two actuation  modes 

Truss cell material    Inconel 718 

Therm. expansion  coef.  8.5e-6/ °F 

Elastic modulus    24 Mpsi 

Cell dimensions  Lb=1”, d=0.059” 

Volume density    ρ=0.11 

Design angle ω  35° 
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Perspective on Materials 
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Thermo-mechanical test of N30Pt20Ti50 
at 198 Mpa, Courtesy of NASA, M.  
Nathal, etc 2013 

•Baseline materials:   High temperature alloys 
•Marginal CTE for large tip clearance modulation 
•Use of material phase transformation induced 
strain:   10x in stroke 

 
•Commercially available Shape Memory Alloy (Nitinol 
SMA): 2~4% recovery and Af <100 °C 

•Applicable to Fan clearance modulation 
 

•High temperature SMA in development 
•Ni30Pt20Ti50 by NASA GRC,  
•Recovery >2% and Af>250°C 
•High TRL and in useful form (NASA) 
•Applicable to HPC clearance modulation 

 
•Ru-50 Nb  and RuTa based high temperature SMA : 

•Martenstic transformation temperature > 800 °C 
•In early stage development  
•Potentially applicable to HTP clearance modulation 

Nov 13–15, 2013 NASA Aeronautics Research Mission Directorate FY12 LEARN Phase I Technical Seminar  



NASA Aeronautics Research Institute 

Nov 13–15, 2013 NASA Aeronautics Research Mission Directorate FY12 LEARN Phase I Technical Seminar  

Proof of Concept  Experiment  
In progress 

Qualitatively Evaluation of  
•Displacement output 

•Linear and binary  thermal expansion 
•Response time in cooling 
•Structural stiffness  

Nitinol Tetrahedron Actuator 
•Thermal expansion : 6.1e-6 /°F  
•Electrical resistivity : 39 mΩ-in 

Anticipated results 

Test apparatus 
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Summary 

22 

•Active truss tip clearance modulation by thermal 
expansion is conceptually viable  

•kinematically, structurally and thermally 
•Fast response is analytically verified  to be within tens 
of seconds at HPT environment 
•Modulation by material  linear thermal expansion is 
adequate for small and mi-size engines 
•Experimental validation of tetrahedron truss actuation 
in progress 
 

•Challenges identified in materials  
•High induced strain for large transport engine 
•High temperature to enable HPT  
•High resistivity to ease direct electric heating  

Nov 13–15, 2013 NASA Aeronautics Research Mission Directorate FY12 LEARN Phase I Technical Seminar  



NASA Aeronautics Research Institute 

Next Steps 
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•LEARN Phase I 
•Enhance modeling fidelity of single cell-truss actuation 

•Structural FEM model close loop with air cooling 
models 
•Air cooling models close loop with electric heating 

•Experimental validation of Tetrahedron Actuation in 
room temperature. 
 
•LEARN Phase II 
•Expanding structural and air cooling models to large 
scale repetitive Active Truss Matrix structure  
•Notional design and analysis of tip modulation on a 
notional engine  
•Electric heating and control of truss modulation 
•High temperature shape memory alloy (HTSMA)  
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Distribution/Dissemination 
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In 2012, NARI awarded ARMD LEARN Fund grants to make deliberate 
investments in early-stage and potentially revolutionary aviation concepts 
and technologies that are aligned with NASA's mission. These grants went 
to teams external to NASA. The objectives of this three-day seminar are to 
increase awareness of LEARN activities within NASA projects, to provide 
technical feedback to LEARN principal investigators, and educate/inform 
the public. This will help facilitate transfer of LEARN-developed 
technologies within NASA and disseminate LEARN findings to the external 
aeronautics community, including academia, industry, and the general 
public.  

 
Distribution and dissemination are unlimited 
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