

Active Truss for Fast Response Tip Clearance Modulation

Fanping Sun, Zaffir Chaudhry, Hailing Wu, Lee Hoffman and Huan Zhang

United Technologies Research Center

- •The innovation
- Technical approach
- Impact of the innovation
- LEARN Phase I Results
- Summary
- •Next steps

- Current State of Technology
 - Thermal expansion and contraction of entire shroud/case (Active Case Cooling)
 - Slow response and scheduled modulation
 - huge thermal mass with seal segments directly mounted on engine casing,
 - ineffective heating or cooling of the shroud via convection between shroud surfaces and air.
 - No asymmetry modulation
- Prior Research
 - Mechanical/Smart materials/Hydraulic/Pneumatic
 - External to engine case/shrouds and moving parts
 - Incompatibility with environment for HPT
- Need for Innovation
 - Fast Response Tip Clearance Modulation Mechanism
 - Light weight, compact and environmental compatible to HPT
 - Integral to shroud-case structure w/o moving parts

DeCastro, etc, 2005

A Fast Response Tip Clearance Modulation

- •Enable turbine tip clearance set to "optimal" during longest flight segment (cruise)
- •Reduce specific fuel burn (SFC) and exhaust gas temperature (EGT)
 - •0.01" in turbine blade tip clearance equals:
 - -1% in SFC
 - -10° C in EGT
- Low CO2 emission
- More time on wing

Innovation-Active Truss Modulation

NASA Aeronautics Research Institute

Approach:

- Variable geometry active truss for tip clearance modulation
- Truss actuation by thermally induced strains
- Low thermal mass and large surface area for heat exchange Benefits:
- Sustain beauties of thermal expansion approach
- Fast Response-one order of magnitude improvement
- Light weight and Integral to shroud-case structure
- Asymmetric and symmetry clearance modulation

Active Truss Modulation (ATM)

Prime Movers

Dual Tetrahedron

Parallel Theta Ring (2D)

Dual Pyramid

Actuation by linear thermal expansion
Structural amplification of displacement
Multiple inputs and single output actuation

•Low thermal mass and volume density (<0.1)

•One order of magnitude faster response than engine case cooling (ACC) Principle of Truss Actuation

NASA Aeronautics Research Institute

For thermally induced actuation •Displacement •Stiffness •Response •Temperature

$$H = 2\sqrt{l_d^2 - \frac{l_b^2}{3}} = 2l_d \sqrt{1 - \cos^2 \omega}$$

Actuation displacement

$$\frac{\partial H}{\partial l_d} = \frac{2l_d}{\sqrt{l_d^2 - l_b^2/3}} = \frac{2}{\sqrt{1 - \cos^2(\omega)}}$$
$$\frac{\partial H}{\partial l_b} = \frac{-\frac{2}{3}l_b}{\sqrt{l_d^2 - l_b^2/3}} = \frac{-\frac{2\sqrt{3}}{3}\cos(\omega)}{\sqrt{1 - \cos^2(\omega)}}$$

Tip clearance modulation

$$\Delta H_{t} = \sum_{j=1\sim 6} \frac{\partial H}{\partial l_{d}^{j}} dl_{d}^{j} - \sum_{i=7\sim 9} \frac{\partial H}{\partial l_{b}^{i}} dl_{b}^{i}$$

Thermal expansion in each members

$$dl_d = l^j{}_d C_{ted} \varDelta T_{l_d}$$

$$dl_b = l^i{}_b C_{teb} \varDelta T_{l_b}$$

Principle of Truss Actuation

NASA Aeronautics Research Institute

Structural stiffness

$$K_D = \frac{9k_d k_b \sin^2 \omega}{4k_d \cos^2 \omega + 6k_b}$$

Total displacement modulation

$$\Delta H = \Delta H_t + \frac{F}{K_D}$$

Member buckling (L/r slenderness)

$$\sigma_{cr} = \frac{4\pi^2 E}{\left(L_b / d\right)^2}$$

Volume density (weight)

$$\overline{\rho} = \frac{\pi (3 + 2\sqrt{3}/\cos^2 \omega)}{\tan(\omega)} (d/l_b)^2$$

Kinematic and Structural Design Envelope

Nov 13-15, 2013

Kinematic and Structural Design Envelope

FEM Model

 Δ T=300 °F applied to 1 diag. member

 Δ T=300 °F applied to 3 diag. members

Thermal expansion field

Thermal expansion field

FEM Model (cont'd)

 Δ T=300 °F applied to 3 horizontal members

Deformation field under load

Thermal Expansion

- •Linear summation of thermal expansion by each member
- •Max principal stress $\sigma_{max} << \sigma_{yield} \& \sigma_{cr}$ under ΔP = 180 psi

Nov 13-15, 2013

Electric Activation of Truss Matrix

NASA Aeronautics Research Institute

Direct resistive heating topologies

Heating each member individually
Group collective heating (base and diagonal)
Combination of series and parallel heating
Intelligent heating-Wheatstone bridge effect
Challenge: Large current and low voltage

Cell to cell series connection
Full actuation
Fail safe
Embedded wiring in case

=0

Series connection and partial grouping (2/3 activation)

Parallel/series connection and partial grouping (1/2 activation)

Air Cooling- Activation and Deactivation

NASA Aeronautics Research Institute

Air Cooling Modeling

- Steady state heating/cooling
- Transient cooling

Remain activated, electric power on

Deactivated, electric power off

To maintain temperature difference while electrically heated

Member temperature contours			
Air flow (m/s)	0.1	0.1	10
Temperature difference between heated and unheated wires (°C)	100	110	180
Heat dissipation rate (W)	7.04	6.9	42.2

•Six members being electrically heated at 899 °C (1650°F) while being air cooled

•Three members being air cooled to 732°C (1350°F)

Nov 13-15, 2013

Member temperature change during cool-down with air velocity of 20 m/s

System Design Case

NASA Aeronautics Research Institute

Design Parameters				
20 truss cells per shroud	structurally in parallel			
	electrically in series			
	two actuation modes			
Truss cell material	Inconel 718			
Therm. expansion coef.	8.5e-6/ °F			
Elastic modulus	24 Mpsi			
Cell dimensions	Lb=1", d=0.059"			
Volume density	<i>ρ</i> =0.11			
Design angle ω	35 <i>°</i>			

	Clearance modulation , in	Max. Deflection @ 2200, Ibf	No of actuator s per shroud	No. of shroud segments	Shroud surface area, in^2	Headroom between case and shroud, in	Air temp. between case and shroud ° F	Deactivation time, S	Power to maintain activated, w
Nominal requirement*	0.05~0.1	N/A	1	20	12	2	1300	N/A	N/A
Tetrahedron truss cell	0.035	0.005	28	20	12	1.5	1650	13	1344

*DeCastro, 2005

Nov 13–15, 2013

Perspective on Materials

NASA Aeronautics Research Institute

Baseline materials: High temperature alloys
Marginal CTE for large tip clearance modulation
Use of material phase transformation induced strain: 10x in stroke

•Commercially available Shape Memory Alloy (Nitinol SMA): 2~4% recovery and Af <100 °C •Applicable to Fan clearance modulation

High temperature SMA in development
Ni30Pt20Ti50 by NASA GRC,
Recovery >2% and Af>250°C
High TRL and in useful form (NASA)
Applicable to HPC clearance modulation

•Ru-50 Nb and RuTa based high temperature SMA :

- •Martenstic transformation temperature > 800 °C
- In early stage development
- Potentially applicable to HTP clearance modulation

Thermo-mechanical test of N30Pt20Ti50 at 198 Mpa, Courtesy of NASA, M. Nathal, etc 2013

Proof of Concept Experiment

NASA Aeronautics Research Institute

In progress

Qualitatively Evaluation of •Displacement output •Linear and binary thermal expansion •Response time in cooling •Structural stiffness

Nitinol Tetrahedron Actuator
Thermal expansion : 6.1e-6 /°F
Electrical resistivity : 39 mΩ-in

Anticipated results

Active truss tip clearance modulation by thermal expansion is conceptually viable
kinematically, structurally and thermally
Fast response is analytically verified to be within tens

- of seconds at HPT environment
- Modulation by material linear thermal expansion is adequate for small and mi-size engines
- •Experimental validation of tetrahedron truss actuation in progress

Challenges identified in materials

- •High induced strain for large transport engine
- High temperature to enable HPT
- •High resistivity to ease direct electric heating

Next Steps

Structural FEM model close loop with air cooling

NASA Aeronautics Research Institute

models

LEARN Phase I

Air cooling models close loop with electric heating
Experimental validation of Tetrahedron Actuation in room temperature.

Enhance modeling fidelity of single cell-truss actuation

LEARN Phase II

Expanding structural and air cooling models to large scale repetitive Active Truss Matrix structure
Notional design and analysis of tip modulation on a notional engine

- •Electric heating and control of truss modulation
- High temperature shape memory alloy (HTSMA)

Distribution/Dissemination

NASA Aeronautics Research Institute

In 2012, NARI awarded ARMD LEARN Fund grants to make deliberate investments in early-stage and potentially revolutionary aviation concepts and technologies that are aligned with NASA's mission. These grants went to teams external to NASA. The objectives of this three-day seminar are to increase awareness of LEARN activities within NASA projects, to provide technical feedback to LEARN principal investigators, and educate/inform the public. This will help facilitate transfer of LEARN-developed technologies within NASA and disseminate LEARN findings to the external aeronautics community, including academia, industry, and the general public.

Distribution and dissemination are unlimited