

Active Truss for Fast Response Tip Clearance Modulation

Fanping Sun, Zaffir Chaudhry, Hailing Wu, Lee Hoffman and Huan Zhang

United Technologies Research Center

NASA Aeronautics Research Mission Directorate (ARMD) FY12 LEARN Phase I Technical Seminar Nov 13-15, 2013

- •The innovation
- •Technical approach
- •Impact of the innovation
- •LEARN Phase I Results
- •Summary
- •Next steps

- Current State of Technology
	- Thermal expansion and contraction of entire shroud/case (Active Case Cooling)
	- Slow response and scheduled modulation
		- huge thermal mass with seal segments directly mounted on engine casing,
		- ineffective heating or cooling of the shroud via convection between shroud surfaces and air.
		- No asymmetry modulation
- Prior Research
	- Mechanical/Smart materials/Hydraulic/Pneumatic
	- External to engine case/shrouds and moving parts
	- Incompatibility with environment for HPT
- Need for Innovation
	- Fast Response Tip Clearance Modulation Mechanism
	- Light weight, compact and environmental compatible to HPT
	- Integral to shroud-case structure w/o moving parts

DeCastro, etc, 2005

A Fast Response Tip Clearance Modulation

- •Enable turbine tip clearance set to "optimal" during longest flight segment (cruise)
- •Reduce specific fuel burn (SFC) and exhaust gas temperature (EGT)
	- •0.01" in turbine blade tip clearance equals:
		- -1 % in SFC
		- -10° C in EGT
- •Low CO2 emission
- •More time on wing

Innovation-Active Truss Modulation

NASA Aeronautics Research Institute

Approach:

- Variable geometry active truss for tip clearance modulation
- Truss actuation by thermally induced strains
- Low thermal mass and large surface area for heat exchange Benefits:
- Sustain beauties of thermal expansion approach
- Fast Response-one order of magnitude improvement
- Light weight and Integral to shroud-case structure
- Asymmetric and symmetry clearance modulation

Active Truss Modulation (ATM) **NASA**

Prime Movers

Dual Tetrahedron **Dual Pyramid**

Parallel *Theta* Ring (2D)

•Actuation by linear thermal expansion •Structural amplification of displacement •Multiple inputs and single output actuation

•Low thermal mass and volume density $(**0.1**)$

•One order of magnitude faster response than engine case cooling (ACC)

NASA Principle of Truss Actuation

NASA Aeronautics Research Institute

For thermally induced actuation •Displacement •Stiffness •Response •Temperature

$$
H = 2\sqrt{l_d^2 - \frac{l_b^2}{3}} = 2l_d\sqrt{1 - \cos^2{\omega}}
$$

Actuation displacement

$$
\frac{\partial H}{\partial l_d} = \frac{2l_d}{\sqrt{l_d^2 - l_b^2/3}} = \frac{2}{\sqrt{1 - \cos^2(\omega)}}
$$

$$
\frac{\partial H}{\partial l_b} = \frac{2l_b}{\sqrt{l_d^2 - l_b^2/3}} = \frac{2\sqrt{3}}{\sqrt{1 - \cos^2(\omega)}}
$$

Tip clearance modulation

$$
\Delta H_t = \sum_{j=1}^{\infty} \frac{\partial H}{\partial l_d^j} dl_d^j - \sum_{i=7}^{\infty} \frac{\partial H}{\partial l_b^i} dl_b^i
$$

Thermal expansion in each members

$$
d l_d = l^j{}_d C_{ted} \varDelta T_{l_d}
$$

$$
dl_b = l^i{}_b C_{teb} \varDelta T_{l_b}
$$

NASA Principle of Truss Actuation

NASA Aeronautics Research Institute

Structural stiffness

$$
K_D = \frac{9k_d k_b \sin^2 \omega}{4k_d \cos^2 \omega + 6k_b}
$$

Total displacement modulation

$$
\Delta H = \Delta H_t + \frac{F}{K_D}
$$

Member buckling (*L*/*r* slenderness)

$$
\sigma_{cr} = \frac{4\pi^2 E}{\left(L_b/d\right)^2}
$$

Volume density (weight)

$$
\overline{\rho} = \frac{\pi (3 + 2\sqrt{3}/\cos^2 \omega)}{\tan(\omega)} (d/l_b)^2
$$

Kinematic and Structural Design Envelope

Kinematic and Structural Design Envelope

FEM Model

∆ T=300 °F applied to 1 diag. member Thermal expansion field

∆ T=300 °F applied to 3 diag. members Thermal expansion field

∆ T=300 °F applied to 3 horizontal members

Deformation field under load

Thermal Expansion

- •Linear summation of thermal expansion by each member
- •Max principal stress σmax<< σyield & σcr under ∆P= 180 psi

NASA Electric Activation of Truss Matrix

NASA Aeronautics Research Institute

Direct resistive heating topologies

•Heating each member individually •Group collective heating (base and diagonal) •Combination of series and parallel heating •Intelligent heating-Wheatstone bridge effect Challenge: Large current and low voltage

•Cell to cell series connection •Full actuation •Fail safe •Embedded wiring in

I=0

case

Series connection and partial grouping (2/3 activation)

Parallel/series connection and partial grouping (1/2 activation)

NASA Air Cooling- Activation and Deactivation

NASA Aeronautics Research Institute

Air Cooling Modeling

- Steady state heating/cooling
- Transient cooling in the set of the

Remain activated, electric power on

Deactivated, electric power off

To maintain temperature difference while electrically heated

•Six members being electrically heated at 899 ºC (1650°F) while being air cooled

•Three members being air cooled to 732ºC (1350°F)

Member temperature change during cool-down with air velocity of 20 m/s

*DeCastro, 2005

Perspective on Materials

NASA Aeronautics Research Institute

•Baseline materials: High temperature alloys •Marginal CTE for large tip clearance modulation •Use of material phase transformation induced strain: 10x in stroke

•Commercially available Shape Memory Alloy (Nitinol SMA): 2~4% recovery and Af <100 °C •Applicable to Fan clearance modulation

•High temperature SMA in development •Ni30Pt20Ti50 by NASA GRC, •Recovery >2% and Af>250°C •High TRL and in useful form (NASA) •Applicable to HPC clearance modulation

•Ru-50 Nb and RuTa based high temperature SMA :

- •Martenstic transformation temperature > 800 °C
- •In early stage development
- •Potentially applicable to HTP clearance modulation

Thermo-mechanical test of N30Pt20Ti50 at 198 Mpa, Courtesy of NASA, M. Nathal, etc 2013

NASA Proof of Concept Experiment

NASA Aeronautics Research Institute

In progress

Qualitatively Evaluation of •Displacement output •Linear and binary thermal expansion •Response time in cooling •Structural stiffness

Nitinol Tetrahedron Actuator •Thermal expansion : 6.1e-6 /°F •Electrical resistivity : 39 mΩ-in

Anticipated results

•Active truss tip clearance modulation by thermal expansion is conceptually viable •kinematically, structurally and thermally

- •Fast response is analytically verified to be within tens of seconds at HPT environment
- •Modulation by material linear thermal expansion is adequate for small and mi-size engines
- •Experimental validation of tetrahedron truss actuation in progress

•Challenges identified in materials •High induced strain for large transport engine •High temperature to enable HPT

•High resistivity to ease direct electric heating

Next Steps

•LEARN Phase I

NASA Aeronautics Research Institute

•Enhance modeling fidelity of single cell-truss actuation •Structural FEM model close loop with air cooling models

•Air cooling models close loop with electric heating •Experimental validation of Tetrahedron Actuation in room temperature.

\bullet FARN Phase II

•Expanding structural and air cooling models to large scale repetitive Active Truss Matrix structure •Notional design and analysis of tip modulation on a notional engine

•Electric heating and control of truss modulation

•High temperature shape memory alloy (HTSMA)

Distribution/Dissemination

NASA Aeronautics Research Institute

In 2012, NARI awarded ARMD LEARN Fund grants to make deliberate investments in early-stage and potentially revolutionary aviation concepts and technologies that are aligned with NASA's mission. These grants went to teams external to NASA. The objectives of this three-day seminar are to increase awareness of LEARN activities within NASA projects, to provide technical feedback to LEARN principal investigators, and educate/inform the public. This will help facilitate transfer of LEARN-developed technologies within NASA and disseminate LEARN findings to the external aeronautics community, including academia, industry, and the general public.

Distribution and dissemination are unlimited