Active Truss for Fast Response Tip Clearance Modulation

Fanping Sun, Zaffir Chaudhry, Hailing Wu, Lee Hoffman and Huan Zhang

United Technologies Research Center

NASA Aeronautics Research Mission Directorate (ARMD)
FY12 LEARN Phase I Technical Seminar
Nov 13-15, 2013
Outlines

• The innovation
• Technical approach
• Impact of the innovation
• LEARN Phase I Results
• Summary
• Next steps
Need for Innovation

Current State of Technology

- Thermal expansion and contraction of entire shroud/case (Active Case Cooling)
- Slow response and scheduled modulation
 - huge thermal mass with seal segments directly mounted on engine casing,
 - ineffective heating or cooling of the shroud via convection between shroud surfaces and air.
- No asymmetry modulation

Prior Research

- Mechanical/Smart materials/Hydraulic/Pneumatic
- External to engine case/shrouds and moving parts
- Incompatibility with environment for HPT

Need for Innovation

- Fast Response Tip Clearance Modulation Mechanism
- Light weight, compact and environmental compatible to HPT
- Integral to shroud-case structure w/o moving parts

DeCastro, etc, 2005
Impact of Innovation

A Fast Response Tip Clearance Modulation

• Enable turbine tip clearance set to “optimal” during longest flight segment (cruise)
• Reduce specific fuel burn (SFC) and exhaust gas temperature (EGT)
 • 0.01” in turbine blade tip clearance equals:
 – 1 % in SFC
 – 10° C in EGT
• Low CO₂ emission
• More time on wing
Innovation-Active Truss Modulation

Approach:
- Variable geometry active truss for tip clearance modulation
- Truss actuation by thermally induced strains
- Low thermal mass and large surface area for heat exchange

Benefits:
- Sustain beauties of thermal expansion approach
- Fast Response-one order of magnitude improvement
- Light weight and integral to shroud-case structure
- Asymmetric and symmetry clearance modulation
Active Truss Modulation (ATM)
Core Elements of Truss Actuation

Prime Movers

Dual Tetrahedron

Dual Pyramid

Parallel \textit{Theta} Ring (2D)

• Actuation by linear thermal expansion
• Structural amplification of displacement
• Multiple inputs and single output actuation
• Low thermal mass and volume density (<0.1)
• One order of magnitude faster response than engine case cooling (ACC)
Principle of Truss Actuation

For thermally induced actuation
- Displacement
- Stiffness
- Response
- Temperature

\[
H = 2 \sqrt{l_d^2 - \frac{l_b^2}{3}} = 2l_d \sqrt{1 - \cos^2 \omega}
\]

Actuation displacement
\[
\frac{\partial H}{\partial l_d} = \frac{2l_d}{\sqrt{l_d^2 - \frac{l_b^2}{3}}} = \frac{2}{\sqrt{1 - \cos^2 (\omega)}}
\]
\[
\frac{\partial H}{\partial l_b} = \frac{-2}{3} \frac{l_b}{\sqrt{l_d^2 - \frac{l_b^2}{3}}} = -\frac{2\sqrt{3}}{3} \cos (\omega)
\]

Tip clearance modulation
\[
\Delta H_t = \sum_{j=1 \sim 6} \frac{\partial H}{\partial l_d^j} dl_d^j - \sum_{i=7 \sim 9} \frac{\partial H}{\partial l_b^i} dl_b^i
\]

Thermal expansion in each members
\[
dl_d = l_d^j C_{ted} \Delta T_{l_d}
\]
\[
dl_b = l_b^i C_{teb} \Delta T_{l_b}
\]
Principle of Truss Actuation

Structural stiffness

\[K_D = \frac{9k_d k_b \sin^2 \omega}{4k_d \cos^2 \omega + 6k_b} \]

Total displacement modulation

\[\Delta H = \Delta H_t + \frac{F}{K_D} \]

Member buckling \((L/r)\text{ slenderness}\)

\[\sigma_{cr} = \frac{4\pi^2 E}{(L_b / d)^2} \]

Volume density (weight)

\[\bar{\rho} = \frac{\pi(3+2\sqrt{3}/\cos^2 \omega)}{\tan(\omega)}(d / l_b)^2 \]
Design of Tetrahedron Truss

Kinematic and Structural Design Envelope

- Amplification vs. design angle, omega °
- Stiffness vs. design angle, omega °

Graphs:
- Red line: \(\frac{dH}{dL_d} \)
- Blue line: \(\frac{dH}{dL_b} \)
Design of Tetrahedron Truss

Kinematic and Structural Design Envelope

Case design

Nov 13–15, 2013

NASA Aeronautics Research Mission Directorate FY12 LEARN Phase I Technical Seminar
Design of Tetrahedron Truss

Δ T=300 °F applied to 1 diag. member

Δ T=300 °F applied to 3 diag. members

Thermal expansion field

Thermal expansion field
Design of Tetrahedron Truss

FEM Model (cont’d)

ΔT=300 °F applied to 3 horizontal members

Thermal Expansion

- Linear summation of thermal expansion by each member
- Max principal stress $\sigma_{\text{max}} < \sigma_{\text{yield}}$ & σ_{cr} under $\Delta P = 180$ psi

Deformation field under load
Electric Activation of Truss Matrix

Direct resistive heating topologies
• Heating each member individually
• Group collective heating (base and diagonal)
• Combination of series and parallel heating
• Intelligent heating-Wheatstone bridge effect

Challenge: Large current and low voltage

- Cell to cell series connection
- Full actuation
- Fail safe
- Embedded wiring in case
Electric Activation of Truss Matrix

Series connection and partial grouping (2/3 activation)

Parallel/series connection and partial grouping (1/2 activation)
Air Cooling- Activation and Deactivation

Air Cooling Modeling
- Steady state heating/cooling
- Transient cooling

Remain activated, electric power on

Deactivated, electric power off
Air Cooling - Activation Mode

To maintain temperature difference while electrically heated

<table>
<thead>
<tr>
<th>Member temperature contours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air flow (m/s)</th>
<th>0.1</th>
<th>0.1</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature difference between heated and unheated wires (°C)</td>
<td>100</td>
<td>110</td>
<td>180</td>
</tr>
<tr>
<td>Heat dissipation rate (W)</td>
<td>7.04</td>
<td>6.9</td>
<td>42.2</td>
</tr>
</tbody>
</table>

- Six members being electrically heated at 899 °C (1650°F) while being air cooled
- Three members being air cooled to 732°C (1350°F)
Air Cooling-Deactivation Mode

To cool to ambient temperature after electrical power turn off

Member temperature change during cool-down with air velocity of 20 m/s

T_{low}: 732°C (1350°F)
System Design Case

<table>
<thead>
<tr>
<th>Design Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance modulation, in</td>
<td>0.05-0.1 N/A</td>
</tr>
<tr>
<td>Max. Deflection @ 2200, lbf</td>
<td>N/A</td>
</tr>
<tr>
<td>No of actuator s per shroud</td>
<td>1</td>
</tr>
<tr>
<td>No. of shroud segments</td>
<td>20</td>
</tr>
<tr>
<td>Shroud surface area, in^2</td>
<td>12</td>
</tr>
<tr>
<td>Headroom between case and shroud, in</td>
<td>2</td>
</tr>
<tr>
<td>Air temp. between case and shroud, °F</td>
<td>1300</td>
</tr>
<tr>
<td>Deactivation time, s</td>
<td>N/A</td>
</tr>
<tr>
<td>Power to maintain activated, w</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Design Parameters

- **20 truss cells per shroud**
 structurally in parallel
 electrically in series
 two actuation modes

- **Truss cell material**
 Inconel 718

- **Therm. expansion coef.**
 8.5e-6/ °F

- **Elastic modulus**
 24 Mpsi

- **Cell dimensions**
 Lb=1”, d=0.059”

- **Volume density**
 ρ=0.11

- **Design angle ω**
 35°

Design Angle

- **Nominal requirement**
 0.05-0.1

Tetrahedron truss cell

- **Nominal requirement**
 0.035

<table>
<thead>
<tr>
<th></th>
<th>Clearance modulation, in</th>
<th>Max. Deflection @ 2200, lbf</th>
<th>No of actuator s per shroud</th>
<th>No. of shroud segments</th>
<th>Shroud surface area, in^2</th>
<th>Headroom between case and shroud, in</th>
<th>Air temp. between case and shroud, °F</th>
<th>Deactivation time, s</th>
<th>Power to maintain activated, w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal requirement*</td>
<td>0.05-0.1</td>
<td>N/A</td>
<td>1</td>
<td>20</td>
<td>12</td>
<td>2</td>
<td>1300</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Tetrahedron truss cell</td>
<td>0.035</td>
<td>0.005</td>
<td>28</td>
<td>20</td>
<td>12</td>
<td>1.5</td>
<td>1650</td>
<td>13</td>
<td>1344</td>
</tr>
</tbody>
</table>

*DeCastro, 2005
Perspective on Materials

- Baseline materials: High temperature alloys
 - Marginal CTE for large tip clearance modulation
 - Use of material phase transformation induced strain: 10x in stroke

- Commercially available Shape Memory Alloy (Nitinol SMA): 2~4% recovery and Af <100 °C
 - Applicable to Fan clearance modulation

- High temperature SMA in development
 - Ni30Pt20Ti50 by NASA GRC,
 - Recovery >2% and Af>250°C
 - High TRL and in useful form (NASA)
 - Applicable to HPC clearance modulation

- Ru-50 Nb and RuTa based high temperature SMA:
 - Martenstic transformation temperature > 800 °C
 - In early stage development
 - Potentially applicable to HTP clearance modulation

Thermo-mechanical test of N30Pt20Ti50 at 198 Mpa, Courtesy of NASA, M. Nathal, etc. 2013
Proof of Concept Experiment

In progress

Test apparatus

Nitinol Tetrahedron Actuator
- Thermal expansion: 6.1e-6 /°F
- Electrical resistivity: 39 mΩ-in

Anticipated results

Qualitatively Evaluation of
- Displacement output
 - Linear and binary thermal expansion
- Response time in cooling
- Structural stiffness

November 13–15, 2013
NASA Aeronautics Research Mission Directorate FY12 LEARN Phase I Technical Seminar
Summary

• Active truss tip clearance modulation by thermal expansion is conceptually viable
 • kinematically, structurally and thermally
• Fast response is analytically verified to be within tens of seconds at HPT environment
• Modulation by material linear thermal expansion is adequate for small and mi-size engines
• Experimental validation of tetrahedron truss actuation in progress

• Challenges identified in materials
 • High induced strain for large transport engine
 • High temperature to enable HPT
 • High resistivity to ease direct electric heating
Next Steps

• LEARN Phase I
 • Enhance modeling fidelity of single cell-truss actuation
 • Structural FEM model close loop with air cooling models
 • Air cooling models close loop with electric heating
 • Experimental validation of Tetrahedron Actuation in room temperature.

• LEARN Phase II
 • Expanding structural and air cooling models to large scale repetitive Active Truss Matrix structure
 • Notional design and analysis of tip modulation on a notional engine
 • Electric heating and control of truss modulation
 • High temperature shape memory alloy (HTSMA)
In 2012, NARI awarded ARMD LEARN Fund grants to make deliberate investments in early-stage and potentially revolutionary aviation concepts and technologies that are aligned with NASA's mission. These grants went to teams external to NASA. The objectives of this three-day seminar are to increase awareness of LEARN activities within NASA projects, to provide technical feedback to LEARN principal investigators, and educate/inform the public. This will help facilitate transfer of LEARN-developed technologies within NASA and disseminate LEARN findings to the external aeronautics community, including academia, industry, and the general public.

Distribution and dissemination are unlimited