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@ Air Transportation System MIT

Challenges

o Air transportation
system is very safe,
but efficiency &
robustness
challenges remain

 Most inefficiencies
caused by capacity &
demand imbalances
at range of spatial &
temporal scales

Millions of departures / % on time
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National Airspace System (NAS)

...In-asingle slide
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System Planning

Resources, procedures

FAA, Airports

Demographics,
economics

Airlines

Networks, capital, schedules

A

Resources

Air Traffic Control (ATC) Operations

Tactical response &
execution

__FLIGHT PLAN

Flight planning

Traffic management
I

A !

Analytics

Trajectories, resource use

h____
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. @ Space, Time, Data, and Impacts ARl

+
2 Airline Network Planning
=z . : . .
Flight trajectories FAA System Planning
Local / regional : . p— =
o ? high resolution Strategic ATC Operations = S
C = weather = - [l -
o
£ Tactical decisions
S Etc.
® I
o
o _
O ®©
o 5 |
v g
T X Schedule
A Economic
Demographic
: Climatology, Etc.
E Cancellation gy
9 Traffic management planning Sample data types
National / regional weather EXp'Ored
xample future

Route planning, Etc.

—

Minutes Hours Days Years
Planning / operational horizon

Goal: Demonstrate Big Data analytic framework for aviation across spatial/temporal scales
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Data Descriptions

MIT
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Data Description

Spatial Extent

Spatial Resolution

Temporal Extent

Temporal Resolution

Planning
Flight operations NAS-wide Airport pair 2000 - 2014 Annual
(>300 BTS airports)

Strategic ATC Operations

Flight delays, NAS-wide Airport pair 2008 - 2014 Annual, Seasonal,

cancellations (>300 BTS airports) Daily, Hourly

Traffic Management | NAS-wide N/A 2008 - 2014 Daily

Initiatives

Tactical ATC Operations

Flight trajectories Regional (NY, ~5 miles 2013 - 2015 1 minute
DFW, SFO metro)

Weather radar Regional (NY, 1 km 2013 - 2015 2.5 minute

mosaics DFW, SFO metro)

Convective weather | NY metro Individual route 2013 - 2015 5 minute

impacts

Terminal wind NY metro Individual terminal 2013 - 2015 hourly

impacts
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@[ Anatomy of the Big Data Analysis MIT
- Framework ICAT ~=<

Enabled insights,
applications, solutions

Identify
anomalies,
interesting
behaviors

Size of data...

Capacity 4o

Aggregate ldentify Develop

=7 into compact deECGrrilvtEi}ve patterns | )descriptive,
mathematical P of system predictive

: metrics :
representation behavior models

A

Evaluate
performance,
identify best

practices

Size of insight...
‘Raw’
system data

Analytics must be scalable, generalizable, and interpretable
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[&] Outline PNy, .

« Motivation: Air transportation system challenges and Big
Data opportunities

#  Technical approach & Selected results:
— Strategic ATC Operations
— Tactical ATC Operations
— Airline Network Planning

« Summary of innovations, Potential impacts and Next step
recommendations

e Distribution / Dissemination & Acknowledgements
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Space, Time, Data, and Impacts AT

E

+

2 Airline Network Planning

Z .

FAA System Planning
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9 Traffic management planning

Iilliiﬂﬁ:ﬁgiim National / regional weather
Route planning, Etc. |
Minutes Hours Days Years
Planning / operational horizon
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@ NAS-Wide Operational Network

At a glance...

Airport Connections 1

Links colored by delay
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@[ Strategic ATC Operations: MIT

Analyzing the NAS-Wide Network ICAT ¢
Adjacency Demand-weighted Delay, cancellation weighted adjacency matrix
matrix adjacency matrix
HUB: AUT: DYNAMIC
Sends Receives
~— ~ delay delay
e / High High Inbound,
(Low) (Low) outbound
delay
/ \ balanced
High Low Delay
propagator
KEY: Airport —— Flight connection Low High Delay
reducer
Eigencentrality: Eigencentrality: Hub, authority metrics:
Airport connectivity Airport throughput Asymmetrical propagation of delay, cancellation
Application: Application: Application:
Network structure Network capacity Propagation of weighting metric (delay, cancellation, etc.)

Goal: Characterize and model NAS-wide network dynamics and performance

Approach: Apply novel adjacency matrix weightings and metrics to define
NAS-wide states that characterize propagation of disruptions
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@ Delay State Identification: MT
- Methodology ICAT =<

Framework key:

Size of data

» Aggregate ’ Metrics . Patterns . Insights

‘Raw’ data

R United States Department of Transportation Size of insight...
OFFICE OF THE ASSISTANT SECRETARY FOR RESEARCH AND TECHNOLOGY
Bureau of Transportation Statistics
1 Flight delays, cancellations (2008-2014) Daily Delay /
Cancellation States
A dail Post-event
regate (daily, .
ggregate (dally Calculate Hub, Cluster into performance
hourly) weighted : : evaluation
7 . Authority scores propagation
connectivity matrices : : Hourly Delay /
: for major airports patterns .

(delay, cancellation) Cancellation States
Dynamic delay
propagation for

v predictive modeling
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@ Delay Distribution by Dalily Delay State
1 Selected (5 of 12) Persistent Delay States (2008-2014)
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Daily Delay States provide insights into the scale and propagation of delay
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@[ NAS-Wide Delays by Daily Delay State
- 2008 - 2014

NAS-wide HIGH /|§&
NAS-wide LOW i

Daily System-Wide Delays by Delay State, 2008-2014 Combined
| I

|
I 25th Percentile
I vedian

8000 | I 75th Percentile

000 -

Total delay is similar (but propagation is not) in single-airport dominated states
Total delay in NAS-wide states tends to the extremes
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Hourly Delay States MIT
Capturing Dynamics of Delay Propagation lCATj"

e e -

e —

ATL HIGH
INCREASING

propagation structure, magnitude,
T and trends
— Local delays build and spread

— Propagation is widest as delays
peak and begin decrease

 Observed Hourly Delay State
transition probabilities, and dwell
times can be calculated

* « Hourly Delay States capture delay
LY
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26 July, 2012

@ Network Dynamics Case Study

b i "

NY GDP continues & delay_.sl persist and propagate as
as thunderstorms impact local operations weather dissipates and major traffic corridors clear
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@[ Network Dynamics Case Study
26 July, 2012

Delay growth and propagation
appear to be driven by weather-
related airspace constraints and
control decisions with long time

constants

Delay State dwell times,
transition probabilities provide
Insight into NAS system
response times

corridor remains clear)
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@[ Strategic ATC Operations: T
- Next Steps ICAT =

Delay states
Dwell times
Observed transition

probabilities

Delay Propagation Modeling
Markov Jump Linear System

H‘__L_ mii(t) = prim(t+1) = j|m(t) =1 —
Delay / demand prediction
modeling
Forecast, observed . ‘
(1) Vector of airport delays at time t Control strategy
assessment
m(t) Delay state at time t
Delay-state dependent system matrix
m(t) perived from network delay matrix
Traffic management
decisions oy Probability of transition from
" / tJ delay state i to state j
Big Data for Aviation - 19 LINCOLN LABORATORY

MITLL 2/16/16 MASSACHUSETTS INSTITUTE OF TECHNOLOGY



@ Space, Time, Data, and Impacts
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Scale / scope of impact

NAS+

NAS

Regional

Local

Flight trajectories
Local / regional
high resolution
weather
Tactical decisions
Etc.

Minutes

Strategic ATC Operations

e R

Airline Network Planning
FAA System Planning

o RS =

Years

Planning / operational horizon
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@ Tactical ATC Operations MIT
' NY Metro Focus ICAT =<

NY Metro Arrival Trajectories

Fair weather operations

Convective weather operations

Key:
LGA
EWR
JFK

Goal: Develop a generalizable method to characterize tactical use of terminal and
transition airspace to guide airspace design and support operational best practices

Approach: Identify patterns of arrival / departure resource use through trajectory
analysis and link them to constraints and outcomes

‘arrival (departure) resource’ = routinely used arrival (departure) path
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Tactical ATC Operations:
Methodology
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Observed trajectories

e

13 day
training set

1000 day pattern dataset (2013-2015)

I l 57 day weather impact dataset

Framework key:

Size of data

‘Raw’ data

’ Aggregate ’ Metrics ’ Patterns ’ Insights

Size of insight...

Resource
Identification

Cluster
trajectories using
DBSCAN

5

Resource Use

Assign trajectories to
resources using
Random Forest &
identify non-
conforming trajectories

=)

Operational
Patterns

Cluster Resource
Use Vectors to
identify patterns of
hourly use

Daily Resource Use Matrices

Post-event analysis of
operational dynamics

|-' Hourly Resource Use Vectors
Real time operational dynamics

Hourly Resource Use Patterns

. .

Predictive modeling
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@ Resource Identification MIT

‘Emergence’ of EWR Arrival Resources

4 1600
4 1400

4 1200

1000

©
S
S

NUMBER OF FLIGHTS

600

400

200

BO" W 75" W 70 W 85w . . 65 W 85°w

80" w 757 W 70 W 65

80" w 75" W 70 W

13 days of arrivals... ...23 clusters... ...23 cluster centroids =
Arrival Resources

e Cluster algorithm parameterization involves tradeoffs between
compactness, separability, and dissimilarity of clusters

 Resulting clusters captured ~92% of all trajectories
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@[ Resource Assignment and Non-
conformance: JFK Arrivals

Trajectories assigned to Arrival lllustrations of non-conformance

Resources

-

NYC —

airports

[\

airports P

October 8, 2014 February 11, 2013 September 9, 2013

« Random Forest trajectory classification assigns individual
trajectories to resources and identifies non-conforming trajectories

 Non-conforming trajectories take many forms
— Dynamically alter flow structure
— Workload consequences for Air Traffic Control?
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@ Non-conformance and Weather
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 Trajectories assigned for dataset of 56 days including weather impacted

(convection or adverse winds / ceiling / visibility) and fair weather days

« Significant increase in non-conforming trajectories during weather impacted
days
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@[ NY Metro Operational Dynamics MIT

A Tale of Two Days... (EWR Arrivals) ICAT ~*<

Resource Use Matrix Full day summary

I Non—conformin-g i
20 o I
|
15} ]
10 % y
‘5 October 8, 2014
' Fair weather
3  — T —-— i
o - —
@) ‘
- — e S
L e ey TR ; i
8 10 12 14 16 18 20 22 24 26 280 50 100 1510
S UTC Time # of Flights Managed
7 Period of convective impacts .
g — s ] Non-Conform|ng
©
=
< ]
I
I
1]
I
[
I
I
]
)
' ) July 14, 2015:
10 12 14 16 18 20 22 24 26 2 0 50 100 . .
UTC Time # of Flights Managed Convective Impacts
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@ Hourly Resource Use Patterns MIT
= (RUP) ICAT =<
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(RUP)

Hourly Resource Use Patterns

RUP 3: Arrival / Low Throughput
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@ Hourly Resource Use Patterns MIT
- (RUP) ICAT =<
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By Hour

Occurrence of Resource Use Patterns MIT
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Clear Weather

(427 days)

0.9

08

0.7

Observed RUP Probability

06

051

04

03

0.2

0.1

Convection / Rain
(523 days)

|
/
|
|
|
|
|
i
s
o
o
o
—

11009 <

1200
1300
1400 %
1500 4
1600
1700
1800

Local Time

2200%

23004

I High demand, high throughput

[ ] Departure
I Arrival / Low throughput

I JFK / EWR arrival
[ Very low throughput
I High demand / High non-conformance

High non-conforming (High
Throughput) RUP observed
more (less) frequently on
days with measurable
convection / rain impacts
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@ Tactical ATC Operations: MIT
- Next Steps ICAT <

Resogrce Constraint-normalized
Use Matrices | Clustering to identify days performance assessment
with similar constraints, ‘
resource use Case day identification /

Weather impact scenario generation

/ constraint

Hourly Aggregations

Constrained capacity

NP | ; modeling and prediction
o' SN Yz ; Correlation of Resource .

Resource h_h} . for decision support
constraints, demand
i Development of best

practices

Weather impact
/ constraint
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@ Space, Time, Data, and Impacts CAT

+
2 Airline Network Planning
< FAA System Plannlng
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@ Air Carrier Competition:

Methodology

MIT
ICAT =<

& United States Department of Transporiation

OFFICE OF THE ASSISTANT SECRETARY FOR RESEARCH AND TECHNGLOGY

Bureau of Transportation Statistics

2000 - 2014

‘Raw’ data

Framework key:

’ Aggregate ’ Metrics ’ Patterns » Insights

Size of data

Size of insight...

Annual Route Use,

Identify top 40 routes Define use,

Extract all _ U
city pairs ‘ Calculate # of flights, ‘ competition

# of airlines on each network structures

Competition Networks

Inputs to Strategic
‘ Operations analyses
Basis for predictive

non-stop?
flights

u‘i
' e

Number of City
Pairs

Number of Flights on
route (x 10%)

models to guide capital
Investment
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@ Top 40 Routes Qﬂ
' By number of operations ICAT =<
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Competition on Top 40 Routes
Number of airline operators

sioyelado 1ybif) Jo JoaquinN
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@[ Air Carrier Competition: MIT
- Next Steps ICAT <

Network / S v Effect of structure on
operations ‘e annual NAS performance
Ra ol Characterize operational measured by delay,
T ‘ and competitive network ‘ cancellation
structure as weighted
Market 't 160 4 connectivity matrices Correlation to observed
competition Y \ frequency of Delay,
I X5 Cancellation States
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[&] Outline PNy, .

« Motivation: Air transportation system challenges and Big
Data opportunities

 Technical approach & Selected results:
— Strategic ATC Operations
— Tactical ATC Operations
— Airline Network Planning

#- Summary of innovations, Potential impacts and Next step
recommendations

e Distribution / Dissemination & Acknowledgements
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@ Phase 1 Innovation Summary

 Developed Big Data analysis framework using novel metrics & analytics to
provide new insight across a range of fundamental scales in air transport:

Aggregate Metrics Patterns Insights
O | * Terminal area trajectory e Assignment of * |Identification of small * Resource use pattern
|<T: S| clustering under range trajectories to standard number of key resource dynamics across airport
Tg *§ of operating conditions resources use patterns locations and operating
z 9 * Determination of non- conditions
© O conforming flights

IL_J ol® Airport-pair delay and * NAS network hub and * Identification of small » System-wide delay and
< < cancellation weighted authority scores at number of key NAS- cancellation dynamics
o= directional connectivity range of temporal wide delay and across operating
oy g matrices scales cancellation states conditions
§ 53 « Assessed over multi-
n years

* Airline network » Top route and * |dentification of * Network structural
ji( o | definitions across competition evolutions dominant scheduled evolution over time
w < decades over decades routes * Initial correlations of
o = * Competition dynamics network structure with
::% - external influences

* Insights provide foundation for performance evaluation and predictive
models
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Phase 1 Innovation &

=> Phase 2 Recommendations

Impact Summary

S

0
=

1§

Data

Layer

Analytics
Layer

Application
Layer

Impact &
Tech
Transfer
Layer

Phase 1

Phase 2

« Flight trajectories  * Weather i « Traffic Management Initiatives
« Flight delay « Cancellations i « Emerging data types (FAA SWIM, other?)
e Schedules i « Database structure & technology
Tactical Strategic Airline/ :
ATC ATC FAA : » Refinements across areas
Operations Operations Planning [i{ « Extensions where appropriate
Analysis Analysis Analysis

» Diagnostic system characterization
* Baseline, anomaly, scenario
identification

=

» Predictive modeling

i « Control action analysis <
i « Tool building (visualization & analysis)

L

* NASA: technical interchange meetings:

e Other: Publications

NASA: tools for integration into

existing programs
 FAA / Industry: performance analysis

Tech transfer opportunities inform research needs
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@ Current & Potential Future MIT

Connections to NASA Efforts ICAT ~*%
LEARN Phase 1/2 NASA ARC LEARN Phase 1/2
DFW departure resources DFW-LGA trajectory prediction LGA arrival resources
g.
@ %5" “ . Longitu;:(degl . "

e Tactical Operations / 4D-TBO: end-to-end modeling of TBO-based
traffic management (illustrated)

o Strategic, Tactical Operations / SMART-NAS Testbed: real-time
analytics and visualization tools

— Simulation modules
— Review of archives to identify case studies and define scenarios

« All/ Sherlock Data Warehouse: information models for analytic
products
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@[ Ultimate Impact: Influencing Future MIT
' National Airspace System Operations ICAT =<

System Planning Air Traffic Control (ATC) Operations Analytics

! Tactical

A A [

R

Structural inefficiencies Performance-driven best practices

Capital needs projection (post-event analysis)
Operational decision support
(real-time predictive models)
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« Motivation: Air transportation system challenges and Big
Data opportunities

 Technical approach & Selected results:
— Strategic ATC Operations
— Tactical ATC Operations
— Airline Network Planning

« Summary of innovations, Potential impacts and Next step
recommendations

# e Distribution / Dissemination & Acknowledgements
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@[ Distribution/Dissemination MIT

ICAT <

 Papers

“Multi-Scale Data Mining for Air Transportation System Diagnostics”, accepted to 16th AIAA
Aviation Technology, Integration, and Operations Conference, 13-17 June 2016, Washington DC.

“Clusters and Communities in Air Traffic Delay Networks”, accepted to 2016 IEEE American
Control Conference, 6-8 July 2016, Boston, MA.

“A Visual Analytic Platform for Air Traffic System Strategic and Tactical Operational Evaluation
and Control”, accepted to 2016 Integrated Communications Navigation and Surveillance (ICNS)
Conference, 19-21 April 2016, Herndon, VA.

“Airline Network & Competition Characterization using Big Data Approaches”, to be submitted
to 35! Digital Aviation Systems Conference, 25-29 September 2016, Sacramento, CA.

e Presentations

“Big Aviation Data Mining for Robust, Ultra-Efficient Air Transportation”, Kick-off Meeting &
Overview for NASA ARC Aviation Systems Division researchers, NASA Ames Research Center,
4 April 2015.

“Big Aviation Data Mining for Robust, Ultra-Efficient Air Transportation”, Status report &
Technical Interchange Meeting for specific NASA ARC ASD programs, NASA Ames Research
Center, 18-19 November 2015.

o Other
— Numerous telcons with NASA researchers to discuss potential mutual value from

collaboration (including SMART-NAS, 4D-TBO, Sherlock data warehouse programs)
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Thank you!
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