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Project Overview I 
Innovation: Porous nanocarbon (PNC) materials 

PNCs: Holey graphenes (hGs) and holey carbon nanotubes 
(hCNTs) 

Porosity introduced directly onto sp2 graphitic surfaces of 
nanocarbons - retained crystallinity/conductivity 

Unique approach(es) for scalable production 

Objective: Lightweight , Low-Volume Supercapacitors 
for Aeronautics 

 Phase-I Objective: To obtain electrochemical performance – 
structural relationships of synthesized and modified PNC 
materials for supercapacitor applications 
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Achievements:  TRL: 1-2 (starting) to 3-4 (current) 

 Milestones: 

• Controlled synthesis of PNCs by varying experimental parameters. 

• Modification of PNCs to improve capacitive performance. 

• Electrochemical evaluation of all synthesized and modified PNCs. 

 Distribution/dissemination: 

• 1 published journal article, 1 patent application, 1 provisional 
patent application, 1 invited talk 

Next Step:  

Phase-II: PNC Optimization & Supercap Prototype Demo 

Team:  

Dr. Yi Lin (PI) 

Dr. Jae-Woo Kim (Co-I); Dr. Kent Watson (Co-I) 

Prof. Liangbing Hu (U. of Maryland – College Park) 

Dr. John Connell (NASA LaRC) 

Students/Postdocs: Caroline Campbell (NIA); Michael Funk 
(W&M-LaRC); Xiaogang Han (UMD); Jiaqi Dai (UMD) 

Budget: $200k total;  

~$34k Electrochemical station (modular/expandable) 

~$20k Essential electrochem supplies and equipment 

 

Technical Approach 
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Publications, Patents, Presentations 

 Peer-Reviewed Journal Article:  

– Lin, Y.; Waston, K. A.; Kim, J.-W.; Baggett, D. W.; Working, D. C.; Connell, J. W.             
Bulk Preparation of Holey Graphene via Controlled Catalytic Oxidation. Nanoscale 2013, 5, 
7814-7824 (Cover Article). 

 Non-Provisional Patent Application:  

– Watson, K. A.; Lin, Y.; Ghose, S.; Connell, J. W. “Bulk Preparation of Holey Carbon Allotropes via 
Controlled Catalytic Oxidation.” U.S. patent application filed on 04/01/2013. 

 Provisional Patent Application :  

– Lin, Y.; Kim, J.-W.; Connell, J. W; Funk, M. R.; Campbell, C. J. “Single-Step, Solvent-Free, 
Catalyst-Free Preparation of Holey Carbon Allotropes.” Invention disclosure filed on 
04/04/2013; provisional patent filed on 10/14/2013. 

 Invited Talk: 

– Lin, Y.; Kim, J.-W.; Funk, M. R.; Connell, J. W. Lightweight Platforms toward Composite and 
Energy Storage Applications. 2nd International Symposium on Graphene for Energy. 246th 
American Chemical Society (ACS) National Meeting, Indianapolis, IN (September 2013). 

 Symposium Organization: 

– “Two Dimensional Materials for Energy and Fuel” for 247th ACS National Meeting, Dallas, TX 
(March 2014).  
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+ - 

What is a Supercapacitor? 
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Current collector: Metals 

Electrode: Activated carbon 

Separator: Thin porous 

polymeric membrane 

Electrolyte: Aqueous, 

organic, or ionic liquid 
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Energy Storage: Electrostatic Double-Layer 

“Supercapacitors”  

= “Ultracapacitors” 

= “Electrochemical Capacitors” 

= “Electric Double-Layer Capacitors” 

When compared to a battery: 

Long lifetime 

Low cost per cycle  

High power density 

High peak currents 

No overcharge 

Environment friendly 

Safe 
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Where are (will) they being used? 
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Aeronautics 
Backup power systems 
Avionics 
Communication systems 
UAVs 

Examples of Applications 
 Consumer (portable) electronics 

 Wireless transmission 

 Medical device 

 Vehicle control system 

 Uninterrupted power supply 

 Backup power and pulse 
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What’s Out There? 
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 From 10 mF – 2.8 F 

 Small footprint:  
 28.5mm x 17 mm (one cell);  

 39mm x 17 mm (dual cell) 

 Thickness: 0.7 – 3.9 mm 

 Lightweight packaging 

 Wide operation temperature range (-40 – ~80 oC) 

Maxwell Ultracapacitors 

Cap-XX 

Cap-XX Murata 

http://www.cap-xx.com  

Electrode material: Activated carbon 

November 13-15, 2013 NASA Aeronautics Research Mission Directorate FY12 LEARN Phase I Technical Seminar  

http://www.cap-xx.com/
http://www.cap-xx.com/
http://www.cap-xx.com/


NASA Aeronautics Research Institute 

Evaluation Criteria of Supercapacitor Electrodes 
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Power Density  

 

“How fast can you go” 

Energy Density  

 

“How far can you go” 
The Ragone Plot 

C: Specific Capacitance (F/g; F/cm3) 
RS: Internal resistance (Ω): determined by bulk conductivity 

V: Operating voltage (V) determined by electrolyte 
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Goal & Impact 
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Goal: Lightweight and Low-Volume Supercaps  

Improve both power density and energy density – by weight and volume 

Applications 
Backup power systems 
Avionics 
Communication systems 
UAVs 

Impacts 
 Improve aircraft reliability 

and operation time 
 Improve energy efficiency 
 Reduce emissions 
 Improve aircraft safety 
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Nanocarbon (NC) Electrodes  
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+ - 

Current collector: Metals 

Electrode: Activated carbon 

Separator: Thin porous 

polymeric membrane 

Electrolyte: Aqueous, 

organic, or ionic liquid 

Carbon Nanotubes 

High theoretical surface area 

High electrical conductivity 

~0.02 – 0.8 mm 

Graphene 

L < 10 µm 

T < 5 nm 
L < 5 µm 

D < 100 nm 

Nanocarbons 
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Improve Accessible Surface Area of NCs 
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Graphene/CNT 
Foams/Aerogels: 

 
Lightweight 
Porous 

 
Large volume 
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Our Innovation: 
Porous Nanocarbons (PNCs)  

12 

Holey Carbon Nanotube (hCNT) Holey Graphene (hG) 
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Graphene vs. Holey Graphene 
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Raw graphene electrode Holey graphene electrode 

Equivalent 

Capacitance 

Low volume High volume 

Improved ion transport path at high stacking density 

November 13-15, 2013 NASA Aeronautics Research Mission Directorate FY12 LEARN Phase I Technical Seminar  



NASA Aeronautics Research Institute 

PNCs vs. NCs for Supercapacitors 

In-plane porosity: Improve ion transport path 

Accessible surface area: Improve gravimetric capacitance 

Volume reduction: Mitigate need to create large pores/spacing  

Electrical Conductivity: Retain graphitic crystallinity 
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G 

hG 

CNT 

hCNT 
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Phase-I: Technical Approach 
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PNC Synthesis 

PNC 
Modification 

Electrochemical 
Evaluation 

Device 
Fabrication 

Phase-I 

Phase-II 
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Scalable Synthesis of PNCs 
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Controlled Catalytic Oxidation 
Nanoscale 2013, 5, 7814. 

U.S. patent application filed on 04/01/2013 
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Mix and Heat 

in N2 @ 350 oC 

Silver (Ag) Acetate Graphene or Carbon Nanotubes (CNTs) 

Ag Nanoparticle-Decorated CNTs 

Lin, et al., ACS Nano 2009, 3, 871. 

Solid-state 

No reducing agent 

No electrochemistry 

Rapid 

Scalable 

Versatile 

Catalyst Deposition: A Scalable Approach 
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 Ag nanocatalyst sizes increase with precursor loading. 

Step I: Catalyst (Ag) Deposition 
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Step II: Catalytic Oxidation (“Etching”) 

  Heat Ag nanocatalyst-loaded graphene in air to ~250 – 400 oC for 3 h. 
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50 nm 

hG10 

50 nm 

Control 

50 nm 

hG1 

50 nm 

hG10 

50 nm 

Control 

50 nm 

hG1 

Step III: Catalyst Removal 

hGx (X: Starting Ag Loading) 
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 Catalyst Removal: HNO3 (2.6 M), 2h reflux 

  Hole size is dependent on the starting Ag nanocatalyst loading. 
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Dependence on Etching Temperature 

 Catalytic Oxidation (“Etching”): 10 mol% Ag, <400 oC, Air 

 Catalyst Removal: HNO3 (2.6 M), 2h reflux 

hG10 (270 oC) 

hG10 (325 oC) 

hG10 (375 oC) 

November 13-15, 2013 

  Hole size/morphology can be tuned by 

etching temperature. 
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hCNTs 
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hCNTs 
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1% Ag 
CNT of various average diameters were used 
 SWNT (“Single-walled”): ~1.4 nm 

 FWNT (“Few-walled”): 3 – 8 nm 

 MWNT (“Multi-walled”): 10-30 nm, 40-60 nm, 60-100 nm 

2% Ag 

5% Ag 

CNT shortening should be avoided 

 Loss of long-range conjugation 

 Loss of conductivity 
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Basic Electrochemical Evaluation 
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PNC Materials 

Half-Cell Evaluation 

Working Electrode 

(Glassy Carbon) 

Electrolyte: Aqueous, 

organic, or ionic liquid 
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hG for Supercapacitors 

 0.5 M H2SO4 

 3-electrode configuration (“half cell”) 

Galvanometric Charge-Discharge Cyclic Voltammetry (CV) 

Scan rate: 10, 20, 50, 100, 200, 500, 1000 mV/s Current Density: 10, 5, 2, 1, 0.5 A/g 

1 V/s 

0.5 A/g 10 A/g 
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Control 
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Effect of Holes? 

Scan rate: 10, 20, 50, 100, 200, 500, 1000 mV/s 

 0.5 M H2SO4 

 Half-cell 

hG1 

hG10 

CV curves of hGs are less distorted at higher 

scanning rate: improvement of ion transport. 
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Catalyst Loading        Hole Size 
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Catalyst Loading (mol%)
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• More catalyst, larger holes. 

• Optimal capacitance at ~10 mol% Ag 
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hG20 

G 
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Improvement of capacitance (ion transport) was 

achieved at an optimum catalyst loading (≈ hole size). 
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hCNTs for Supercapacitors 

 6 M KOH; 3-electrode tests 

 Calculated from galvanometric charge-discharge @ 1 A/g  

FWNT (< 5 nm) 

MWNT (10-30 nm) 

MWNT (60-100 nm) 

~0.5% 

~5% 

>10% 
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Improvement of capacitance (ion transport) for 

hCNTs was achieved at an optimum catalyst loading, 

which increases with increasing CNT diameter. 
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hG Modification:  
Oxygen Functional Groups 
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Holey Graphene Oxide 

(hGO) 

hG10 @ 1A/g 
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Further improvement of hG capacitance was achieved 

by introducing more oxygen functional groups. 
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hG Modification:  
Conductive Polymers/Metal Oxides 
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Polyaniline (PANI) 

0.5 M H2SO4 @ 1 A/g 

90wt% PANI  

Manganese Dioxide (MnO2) 

6 M KOH @ 1 A/g 

50% 

83% 

90% 

90% 

KMnO4 as precursor In situ polymerization 

MnO2 
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Catalyst-Free Synthesis of PNCs 

Invention disclosure submitted 04/02/2013; provisional patent filed 10/14/2013. 
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Catalyst-Free Synthesis of hGs 
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430 oC 1h 480 oC 1h 

430 oC 3h 430 oC 10h 

 Catalyst-free partial oxidation of graphene (or CNTs) at higher temperature than catalytic method 

 Minimal processing, single-step 

 Typical hole sizes < 10 nm for hG0 

hG0 
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hG0 Supercapacitors 
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1h 
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3h 
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1h 
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100 mV/s 
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 High capacitance performance  

 Reduced processing steps; low-cost 

 Limit on the hole size variations? 

430C, 10h 

430C, 3h 

430C, 10h 
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“Cat-Free” hCNTs – Powder & Sheets 
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Carbon Nanotube Sheets 

Thickness: ~ 30 µm 

Density: ~ 0.7 g/cm3 

Nanocomp Technologies 
CNT Powder CNT Sheets 

 The single-step procedure is applicable to any assembled 

structures of CNT and graphene materials 
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Device Fab: Full Cell Assembly 
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Holey Graphene Supercapacitors 

CV 
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E = 36 W h/kg; P = 170 kW/kg 

Total hG0 electrode weight: ~0.4 mg 
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Graphene vs. Holey Graphene 

 

38 

Raw graphene electrode Holey graphene electrode 

Equivalent 

Capacitance 

Low volume High volume 

Improved ion transport path at high stacking density 
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Volumetric Performance in Full-Cell 
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Volumetric Capacitance: Current Status 
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 Volumetric performance of a non-optimal hG material is already on-par with the state-of-the-art 

graphene materials and commercial activated carbon. 

 Architecture optimization (Phase-II) would lead to much better performance. 

hG 

Starting Graphene 

Activated Carbon 
Chemical Modified Graphene 

Flat Graphene 

Activated Graphene (“a-MEGO”) 

Graphene Foam 

Graphene Hydrogel 

Laser-Scribed Graphene 

Crumpled Graphene 

Compressed a-MEGO 

Graphene-Carbon Nanotube Hybrid 

Liquid-Densified Graphene 

Curved Graphene 

Current state-of-the-art material ● 

 

0.1 g/cm3 

0.5 g/cm3 

1.0 g/cm3 

Graphene-based supercap architectures ■ 



NASA Aeronautics Research Institute 

A Clear Path into Phase-II 
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PHASE II 
PNC Supercap 

Optimization and 
Prototype Demo 

PHASE I 
PNC Synthesis and 

Modification with EC 
Evaluation 
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Task 1: Electrode Optimization 

Next Steps: Phase II Tasks 

Task 3: Prototype Demo 

 Team: NIA (Lin/Kim) + UMD (Hu) + NASA LaRC (Connell) 

 TRL ~ 5-6 

Task 2: Full-Cell Evaluation 

Power/Energy Density by volume 
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Materials & Architecture Stacking Single Cells 
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Summary 

Synthesized, modified, and characterized PNCs (i.e., hGs 
& hCNTs) of various hole sizes and chemistry for a 
better understanding of structure-performance 
relationship. 

Demonstrated the potential of PNCs as advanced 
supercapacitor electrode materials toward aeronautics 
applications. 

Assembled a multi-institutional team ready for 
challenge in LEARN2 for further optimization in a clear 
path toward a prototype demo. 
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