40 kW Turbo-Alternator Hybrid-Electric Range Extender

AHS Transformative Vertical Flight Concepts Workshop

Rory Keogh, Ph.D. | Lead Propulsion Engineer August 2015

structural health monitoring multi-functional materials lean enterprise solutions

1501 Mariposa St • San Francisco, CA 94107 • 415.572.1843 • http://www.metisdesign.com

Metis Design Corporation (MDC)

Overview

- Introduction to Metis Design
- Project Background
- Technology Overview
 - Turbomachinery and generator
 - Waste heat recovery (recuperation)
 - Performance metrics and scalability
 - Noise

• Summary

Metis Design Corporation (MDC)

• Offer novel multi-disciplinary defense, aerospace & energy solutions

- Diverse engineering staff
 - solid fundamental principles (10/14 staff hold Ph.D.'s)
 - hands-on experience from 42 SBIR/BAA contracts over 12 years
 - **>** Boston MA headquarters & satellite offices in CA & NM
- MDC has invented multiple disruptive technologies
 - Microturbine range extender
 - Carbon nanotube (CNT) de-icing & anti-icing system for composite wings
 - Distributed SHM/HUMS sensor digital infrastructure

Background Projects

Micro-Turbofan for small scale high performance aircraft

Turbo-generator to flight test sub-scale electric aircraft

Microturbine battery electric vehicle range extender

Microturbine for residential combined heat and power

© 2015 Metis Design Corporation

Microturbine Range Extender 4 of 32

Metis Design Corporation (MDC)

- Rory Keogh
 - > Joined Metis Design in 2010 to lead DARPA funded jet engine project
 - B.E. Mech. from NUI Galway, M.S. & Ph.D. from MIT Dept. of Aero and Astronautics
 - > 5 years experience at Boeing (Mechanical Systems) and 6 years management consulting

• Greg Thomas

- > Joined Metis Design in 2010 to work on DARPA funded jet engine project
- > M.Eng. and D.Phil. in Engineering Science from the University of Oxford
- Worked at McLaren international and Schlumberger

• Seth Kessler

- Founded Metis Design in 2002 & completed over 40 govt. research contracts (SBIR & BAA)
- **B.S.**, M.S. & Ph.D. from MIT Department of Aeronautics and Astronautics
- Worked at Lockheed Skunk Works
- Todd Engel
 - **B.S. Mechanical Engineering UCSB 2005, M.S. Mechanical Engineering USC 2010**
 - > 10 years at Rolls Royce / Hyper-Therm High Temperature Composites
- Antoine Corbeil
 - **B.Eng. Mech. Royal Military College of CA 1995, M.Sc. Mech. Eng. University of Ottawa 2010**
 - > 19 years P&W Canada / Rolls Royce Canada / Ingersoll Rand / Brayton Energy Canada

Microturbine Systems

Unique two-spool gas turbine with precombustion power turbine

© 2015 Metis Design Corporation

Microturbine Range Extender 6 of 32

Turbomachinery Innovation

Microturbine Range Extender 7 of 32

metis design

Turbomachinery Innovation

- ~50% impeller / 50% diffuser pressure rise
- ~80% impeller pressure rise comes from loss free centrifugal acceleration (efficiency 92-95%)
- Diffusers are very lossy (power loss proportional to V³)
- Rotating diffuser relative velocity in the diffuser can be halved and streamtube length can be reduced (by ~70%)
- Power turbine can be extract work at ¹/₄ to ¹/₂ of the speed of the impeller with similar efficiency to microturbines

metis design

Microturbine Range Extender 8 of 32

Generator Design Space

Feature	Slow	Medium	Fast
Weight	X	1	 ✓
Efficiency	×	1	 ✓
Cooling	×	4	 ✓
Bearings	1	4	X
Rotordynamics	1	4	X
Cost	1	1	X

© 2015 Metis Design Corporation

Generator / Turbomachine Integration

Turbomachinery and generator (Phase I)

Metis Generator (Phase I)

© 2015 Metis Design Corporation

Microturbine Range Extender 12 of 32

Turbomachinery and generator (Phase II)

Non-recuperated turbo-alternator

Turbo-alternator cross-section

Generator Thermal Control

CFD simulation:

- Stator wall heat flux of 5.85kW/m²
- Rotor wall speed of 40krpm
- Inlet temperature of 15°C
- Only modelling the cooling passage

Results

- Stator heat loss = 160W
- Stator temp = 54°C av, 100°C max
- Rotor tempe = 66°C av, 95°C max

Recuperator Summary

GAP Waste Heat Recuperator Designed and operated within a FP7 CleanSky project

Overall dimensions:

Global HxLxW: 780x760x960mm Core diameter: ~420mm

Global Weight: 50kg Core only: ~30kg

Overall features:

Nominal Effectiveness: 75% Nominal Power Range: 90kW Temperature Range: from 200°C to 650°C

Performance Summary

Parameter	NASA	High OPR	Unit
Power (SLS/18kft)	40/23	56/32	kW
OPR	3.0	4.5	-
TIT	950	1050	С
Recuperator Eff. (SLS/18kft)	60/70	60/70	%
Electrical Eff. (SLS/18kft)	21/26	24/31	%
SFC (SLS/18kft)	391/319	319/267	g/kW.hr
Specific Weight	2.4	3.2	kW/kg
Specific Volume	2.2	3.1	kW/L

Preliminary 300kW Configuration

- Reverse flow annular combustor
- Uncooled two stage axial turbine
- Preliminary estimates using GasTurb12

© 2015 Metis Design Corporation

Microturbine Range Extender 17 of 32

Metis Design Corporation (MDC)

Noise Source Benchmarking

Noise Source	Capstone C30	Metis 40kW
Airflow turbulence in intake, compressor, flow passages, turbine and exhaust	Broadband 1,000 to 5,000 Hz	Similar
Compressor and turbine Blade passing tones	Comp: 14,400 kHz Turbine: 20,800 kHz	Similar
Generator rotor-stator tonal interaction	3,200 Hz	Minimal – ironless core stator
Combustion	Broadband peaks from 400 to 800 Hz	Less noise – lean premixed combustion
Noise pathways	Inlet, outlet and case radiated	Inlet, outlet and case radiated

Noise Level Benchmarking

Conformal Multi-functional Assemblies

- Conformal assemblies for composite & metallic host structures
 - Central carbon nanotube (CNT) layer is core to these properties
 - Surrounded by electrically insulating layers (film adhesive and/or GFRP)
 - Selective electrodes integrated to steer current flow
- No impact to physical structure, 100 200 µm & 5 10 g/m²
 - Can be co-cured with composite laminate
 - Can be installed over composite or metallic skin in secondary process
- Enable multi-functional capabilities: heating, sensing, conducting

© 2015 Metis Design Corporation

Multi-functional CNT Structures 3 of 20

Ice Protection Systems (IPS)

- Quasi-uniform, efficient resistive heating across large areas
- · Heat delivered to iced surface interface to reduce energy required
- Tunable resistivity (material property) for optimal power setting

Triton UAS Full-Scale Wing-Extension Integration

© 2015 Metis Design Corporation

Multi-functional CNT Structures 5 of 20

CNT-IPS Benefits

Manufacturing

- CNT has similar negative CTE to CFRP, eliminate warpage & residual stress
- Thin in nature so can be inserted anywhere in laminate without LE impact
- Can drill countersunk attachment points ANYWHERE without inserts

Weight

- > CNT sheet are 50 μ m \rightarrow 5-10 gsm of heater area
- \blacktriangleright Electrodes are 50 $\mu m \rightarrow$ 10-15 gsm of heater area
- > Total 10-25 gsm of heater area \rightarrow ~3 g for a heating zone on Triton
- Approximate total system weight over full 150' wingspan of 1 kg

Power

- Simple to calculate using patch resistance and input voltage
- Can make very efficient by matching resistance around chord profile
- Less than 50% of uniform power for Triton

CNT-IPS Ice Tunnel Testing

- Ice tunnel testing performed per NAVAIR specified test matrix
 - Heavy icing conditions (125 mph, -22°F, 1.1% LWC)
 - CNT-IPS fully integrated for Predator UAV tail (1 meter span by 10% chord)
- Testing validated predicted capabilities for CNT as heaters
 - Effective for de-ice without mechanical assist > 0°F, with mechanical < 0°F</p>
 - Effective for anti-icing (maintaining skin temperature just above freezing)

© 2015 Metis Design Corporation

Multi-functional CNT Structures 7 of 20

Summary

- A highly integrated two spool turbine and generator enable a very compact, high power density gas turbine generator
- Moderate levels of recuperation (60-70%) dramatically reduce SFC while maintaining high power density
 - SFC and power density improve at increased power levels (100's of kW)
 - Recuperation dramatically reduces noise emitted from the gas turbine generator
- Microturbine testing planned for December 2015

Technical & Business Contact

Rory Keogh, Ph.D. • Lead Propulsion Engineer • Metis Design Corp 415-814-2298 • 415-572-1843 (cell) • rkeogh@metisdesign.com

