DLR student presentations

Introduction to project WeCare

Florian Linke NASA/DLR Virtual Institute Event August 21, 2014

Knowledge for Tomorrow

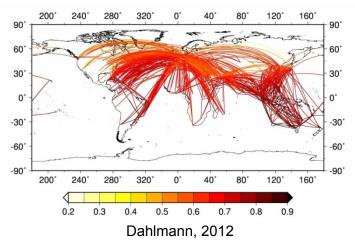
Project WeCare Overview

Key objectives

- Study of relationships between non-CO2 effects and meteorological processes to realize an eco-efficient air traffic system.
- Understanding the differences between strategic and tactical climate mitigation options

Research

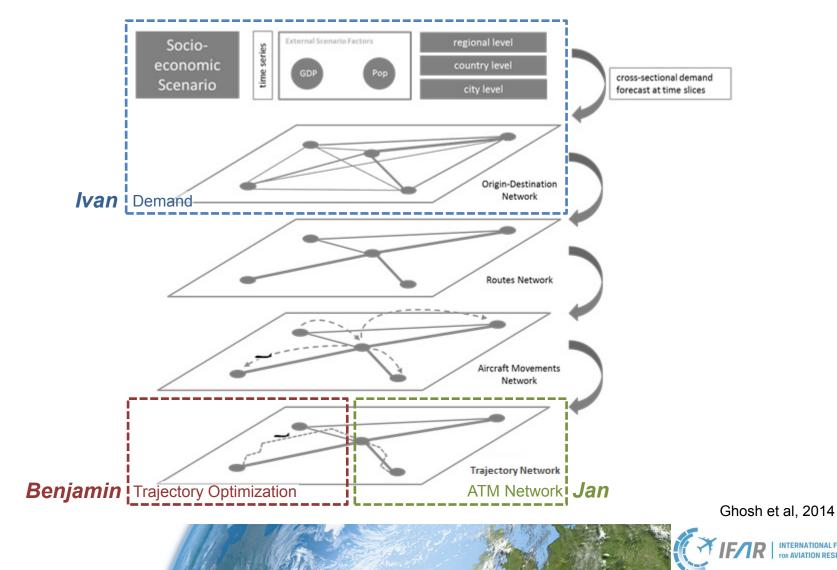
- Quantification of the climate impact reduction potential of weather-based climate-optimized aircraft operations (-> trajectory optimization)
- 2. Cost-benefit-analysis of different operational and technological strategies to reduce the climate impact of the global air traffic, today and in the future (-> scenario-based air traffic simulation)
- 3. Development of new strategies for measuring the influence of air traffic on the atmosphere and experimental proof of certain effects (-> atmospheric physics)



Project WeCare Future Air Transportation System

Cost-benefit-analysis of different operational and technological strategies to reduce the climate impact of the global air traffic, today and in the future, therefore

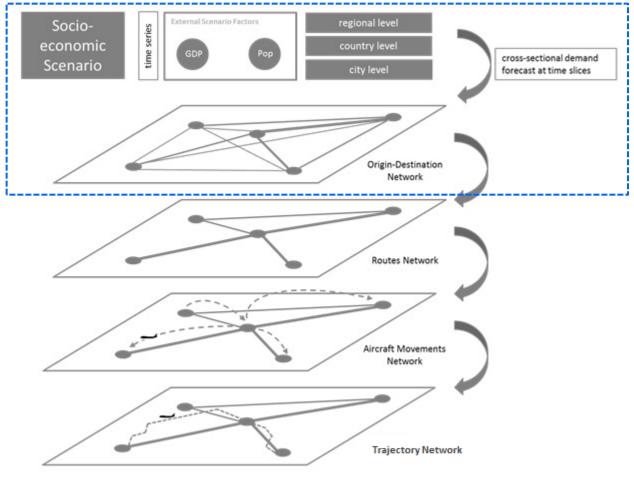
- Scenario based description of the global future air transportation system
- Modelling of worldwide demand, flight routes, fleet mix and aircraft operations
- Integration of unconventional aircraft configurations
- Definition of innovative operational strategies
- Performing air traffic simulations considering adapted operations and/or new aircraft types



Project WeCare

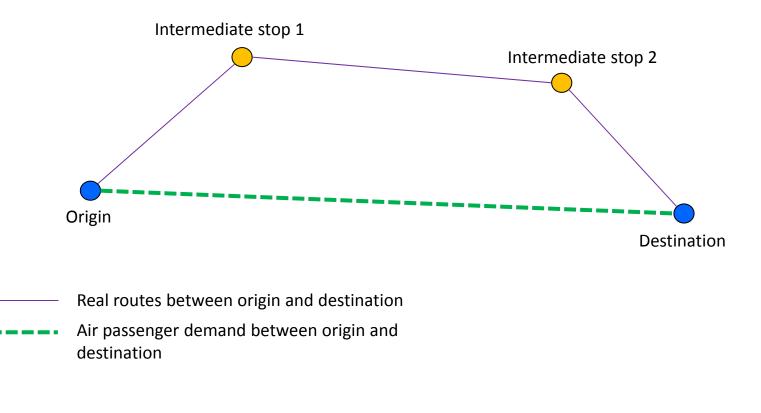
4 layers approach

Forecast of origin-destination air passenger demand between global city pairs using future socioeconomic development scenarios


Knowledge for Tomorrow

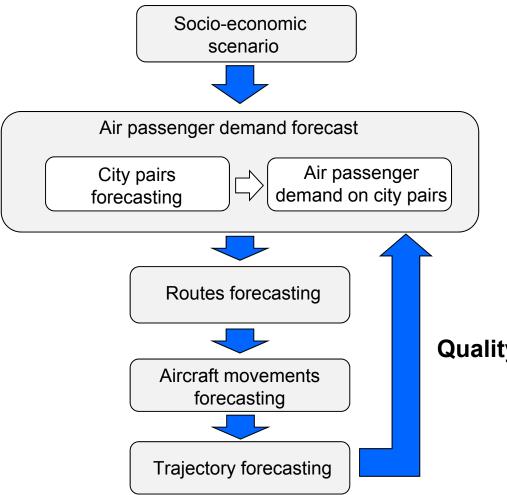
Ivan Terekhov NASA/DLR Virtual Institute Event August 21, 2014

WeCare. 4 layers approach


R.Ghosh et al, 2014

Air passenger demand

• Air passenger demand is a number of passengers which are traveling between two settlements by air transport regardless of intermediate stops within a year.


Air passenger demand forecast

Aggregation level	city level
Number of elements	as many as possible
Choosing criteria for elements	at least one airport
What is forecasted	number of passengers, changes in city pairs connections
Forecasting method:	Quantitative analogies (passengers), Gravity model (connections)

L FORUM

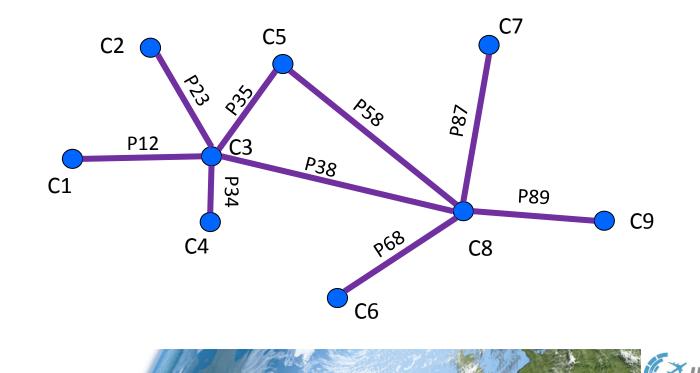
Air passenger demand forecast. The method

Quality Travel Index (QTI)

 $QTI = (QTI_f, QTI_t, QTI_s)$

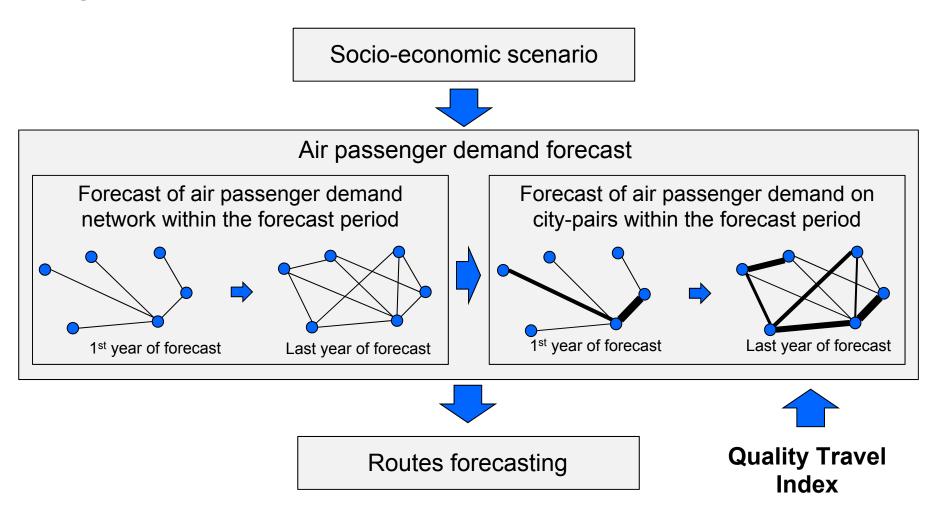
QTI_f – frequency (frequency \uparrow , QTI_f \uparrow) QTI_{tt} - travel time (tt \downarrow , QTI_{tt} \uparrow) QTI_s – segments (segments \downarrow ,QTI_s \uparrow)

Quality Travel Index (QTI)


Air passenger demand forecast. The method

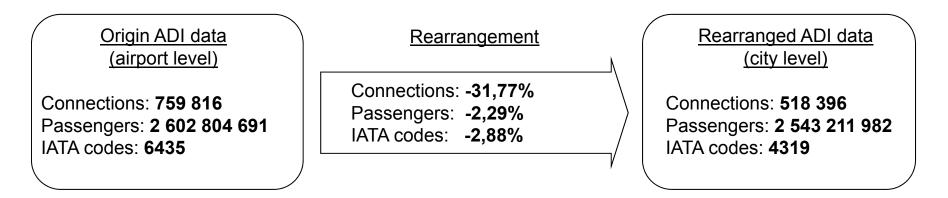
City pairs definition

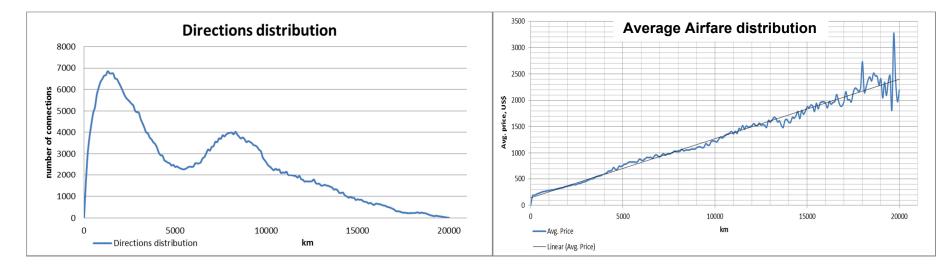
Gravity model based on cities' socio-economic indicators (GDP, population, airfare)


Air passenger demand on city pairs definition

Quantitative analogies between forecasted year and the base year

Expected results


Current results


What has been done:

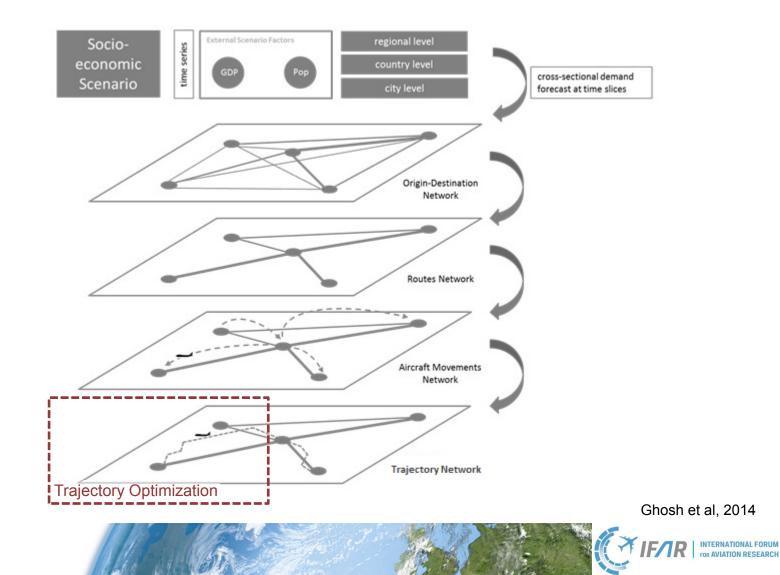
- For 2012, data has been collected on the demand and airfare of airport pairs from ADI database;
- 2012 data has been rearranged from the airport to city level;
- Geographical coordinates, city GDP and city population have been found for cities in the database ;
- Clusterization of the cities in 2012 database has been made;
- Gravities between cities for the 2012 base year have been calculated in order to calculate reference gravities for each cluster pair;
- Based on forecast, gravities between cities for years 2015-2050 (5 years step) have been calculated;

Current results. Base year 2012

Flight Trajectory Optimization

Considering wind and penalty areas

Benjamin Lührs NASA/DLR Virtual Institute Event August 21, 2014

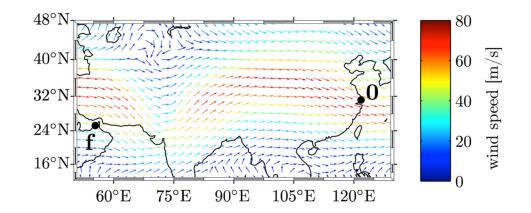

Knowledge for Tomorrow

Project WeCare

4 layers approach

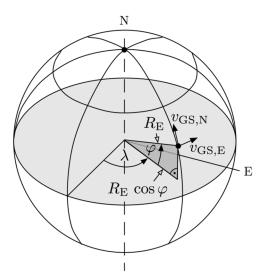
Contents

1. Algorithm


- 2. Climate optimized trajectories
- 3. Current work

Definition of the optimization problem

Assumptions


- massless point
- v_{TAS} = const
- H = const or H_p = const
- H << R_E
- flight path angle $\gamma\approx 0$
- stationary windfield
- flight direction controlled by heading angle $\chi_{\rm H}$

Equations of motion

 $v_{\rm GS,E} = v_{\rm TAS} \sin \chi_{\rm H} + u_{\rm W}(\lambda,\varphi)$ $v_{\rm GS,N} = v_{\rm TAS} \cos \chi_{\rm H} + v_{\rm W}(\lambda,\varphi)$

$$\dot{\lambda} = \frac{v_{\rm GS,E}}{R_{\rm E}\,\cos\varphi} = \frac{v_{\rm TAS}\,\sin\chi_{\rm H} + u_{\rm W}(\lambda,\varphi)}{R_{\rm E}\,\cos\varphi}$$
$$\dot{\varphi} = \frac{v_{\rm GS,N}}{R_{\rm E}} = \frac{v_{\rm TAS}\,\cos\chi_{\rm H} + v_{\rm W}(\lambda,\varphi)}{R_{\rm E}}$$

Definition of the optimization problem

Optimal control problem

minimize

$$\mathcal{J} = \int_{t_0}^{t_f} [c_t + c_{\Psi} \cdot \Psi(\lambda, \varphi)] dt$$

$$= c_t \cdot \underbrace{(t_f - t_0)}_{\text{flight time}} + c_{\Psi} \cdot \int_{t_0}^{t_f} \underbrace{\Psi(\lambda, \varphi)}_{\text{penalty}} dt$$
function
$$\mathbf{Minimum}_{Principle}$$
Subject to
$$\dot{\lambda} = \frac{v_{\text{GS,E}}}{R_{\text{E}} \cos \varphi} = \frac{v_{\text{TAS}} \sin \chi_{\text{H}} + u_{\text{W}}(\lambda, \varphi)}{R_{\text{E}} \cos \varphi}$$

$$\dot{\varphi} = \frac{v_{\text{GS,N}}}{R_{\text{E}}} = \frac{v_{\text{TAS}} \cos \chi_{\text{H}} + v_{\text{W}}(\lambda, \varphi)}{R_{\text{E}}}$$
and
$$\lambda(t_0) = \lambda_0; \quad \varphi(t_0) = \varphi_0$$

$$\lambda(t_f) = \lambda_f; \quad \varphi(t_f) = \varphi_f$$

Two point boundary value problem

system of 3 differential equations

$$\dot{\chi}_{\rm H} = \frac{\partial u_{\rm W}}{\partial \varphi} \cdot \frac{\sin^2 \chi_{\rm H}}{R_{\rm E}} - \frac{\partial v_{\rm W}}{\partial \lambda} \cdot \frac{\cos^2 \chi_{\rm H}}{R_{\rm E} \cos \varphi} + \dots \\ + \left(\frac{\partial v_{\rm W}}{\partial \varphi} - \frac{\partial u_{\rm W}}{\partial \lambda} \cdot \frac{1}{\cos \varphi}\right) \cdot \frac{\sin \chi_{\rm H} \cos \chi_{\rm H}}{R_{\rm E}} + \dots \\ (1) + \frac{\tan \varphi \sin \chi_{\rm H}}{R_{\rm E}} \cdot (v_{\rm TAS} + u_{\rm W} \sin \chi_{\rm H} + v_{\rm W} \cos \chi_{\rm H}) + \dots \\ + c_{\Psi} \left(\frac{\partial \Psi}{\partial \lambda} \cdot \frac{\cos \chi_{\rm H}}{\cos \varphi} - \frac{\partial \Psi}{\partial \varphi} \cdot \sin \chi_{\rm H}\right) \cdot \dots \\ \cdot \frac{v_{\rm TAS} + u_{\rm W} \sin \chi_{\rm H} + v_{\rm W} \cos \chi_{\rm H}}{R_{\rm E} \cdot (c_t + c_{\Psi} \cdot \Psi)} \\ (2) \quad \dot{\lambda} = \frac{v_{\rm GS, E}}{R_{\rm E} \cos \varphi} = \frac{v_{\rm TAS} \sin \chi_{\rm H} + u_{\rm W}(\lambda, \varphi)}{R_{\rm E} \cos \varphi} \\ (3) \quad \dot{\varphi} = \frac{v_{\rm GS, N}}{R_{\rm E}} = \frac{v_{\rm TAS} \cos \chi_{\rm H} + v_{\rm W}(\lambda, \varphi)}{R_{\rm E}} \\ \mathbf{boundary values} \\ \lambda(t_0) = \lambda_0; \quad \varphi(t_0) = \varphi_0 \end{aligned}$$

$$\lambda(t_{
m f}) = \lambda_{
m f}; \ arphi(t_{
m f}) = arphi_{
m f}$$

Solving the two point boundary value problem

Two point boundary value problem system of 3 differential equations

$$\dot{\chi}_{\rm H} = \frac{\partial u_{\rm W}}{\partial \varphi} \cdot \frac{\sin^2 \chi_{\rm H}}{R_{\rm E}} - \frac{\partial v_{\rm W}}{\partial \lambda} \cdot \frac{\cos^2 \chi_{\rm H}}{R_{\rm E} \cos \varphi} + \dots \\ + \left(\frac{\partial v_{\rm W}}{\partial \varphi} - \frac{\partial u_{\rm W}}{\partial \lambda} \cdot \frac{1}{\cos \varphi}\right) \cdot \frac{\sin \chi_{\rm H} \cos \chi_{\rm H}}{R_{\rm E}} + \dots \\ (1) \quad + \frac{\tan \varphi \sin \chi_{\rm H}}{R_{\rm E}} \cdot (v_{\rm TAS} + u_{\rm W} \sin \chi_{\rm H} + v_{\rm W} \cos \chi_{\rm H}) + \dots \\ + c_{\Psi} \left(\frac{\partial \Psi}{\partial \lambda} \cdot \frac{\cos \chi_{\rm H}}{\cos \varphi} - \frac{\partial \Psi}{\partial \varphi} \cdot \sin \chi_{\rm H}\right) \cdot \dots \\ \cdot \frac{v_{\rm TAS} + u_{\rm W} \sin \chi_{\rm H} + v_{\rm W} \cos \chi_{\rm H}}{R_{\rm E} \cdot (c_t + c_{\Psi} \cdot \Psi)} \\ (2) \quad \dot{\lambda} = \frac{v_{\rm GS,E}}{R_{\rm E} \cos \varphi} = \frac{v_{\rm TAS} \sin \chi_{\rm H} + u_{\rm W}(\lambda, \varphi)}{R_{\rm E} \cos \varphi}$$

(3)
$$\dot{\varphi} = \frac{v_{\text{GS,N}}}{R_{\text{E}}} = \frac{v_{\text{TAS}} \cos \chi_{\text{H}} + v_{\text{W}}(\lambda, \varphi)}{R_{\text{E}}}$$

boundary values

$$\begin{split} \lambda(t_0) &= \lambda_0; \quad \varphi(t_0) = \varphi_0 \\ \lambda(t_f) &= \lambda_f; \quad \varphi(t_f) = \varphi_f \end{split}$$

DLR

Approach: solve a sequence of initial value problems

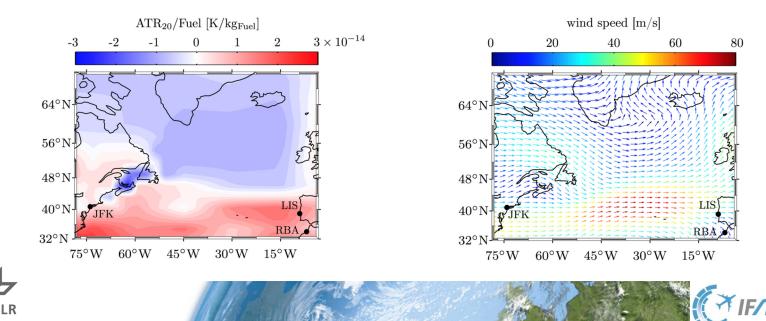
- Numerical integration of the system of differential equations (Dormand-Prince method)
- Choose initial values for λ and φ according to boundary values at starting point 0
- ► Free initial value X_{H0} must be chosen such that boundary conditions at ending point f are satisfied
- lnitial heading $\chi_{\rm H0}$ is obtained iteratively using the shooting method

Contents

- 1. Algorithm
- 2. Climate optimized trajectories
- 3. Current work

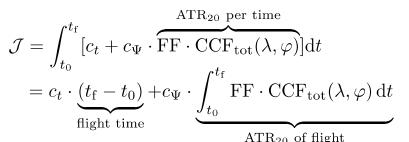
Climate optimized trajectories

Factors that contribute to aviation induced climate change


- Volume of emissions
- Location of emissions
- Local weather

} technological/operational improvements

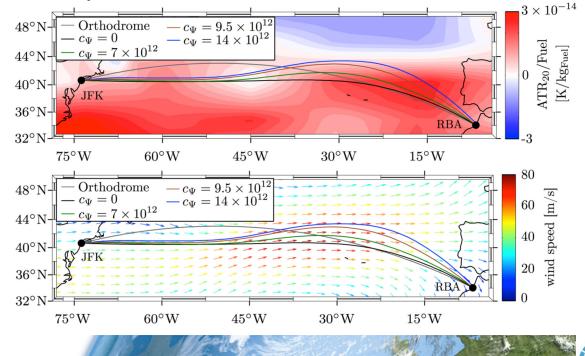
operational strategies (i.e. avoiding climate sensitive regions)


EU-Project REACT4C (Reducing Emissions from Aviation by Changing Trajectories for the benefit of Climate)

- Identification of typical weather situations (Irvine et al., 2013)
- Determination of climate cost functions for CO₂, O₃, CH₄, H₂O, and aviation induced cirrus cloudiness (Grewe et al., 2014)
- Overall climate cost function (summation of all effects)

Climate optimized trajectories

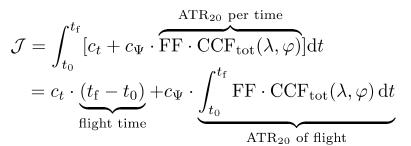
Choice of the costfunction



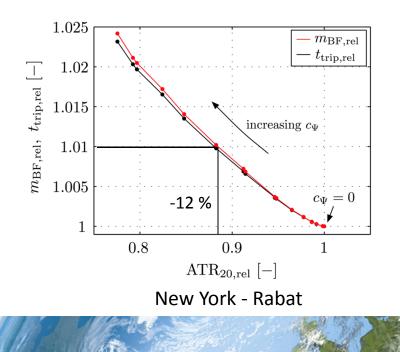
Results (qualitative)

Further assumptions

- v_{TAS} = 247.85 m/s
- H_p = 11278 m
- FF = 1.51 kg/s (A330-200, based on BADA 3.9)
- c_t = 1


•
$$c_{\Psi} = 0 \dots 1.4 \cdot 10^{13}$$

Climate optimized trajectories

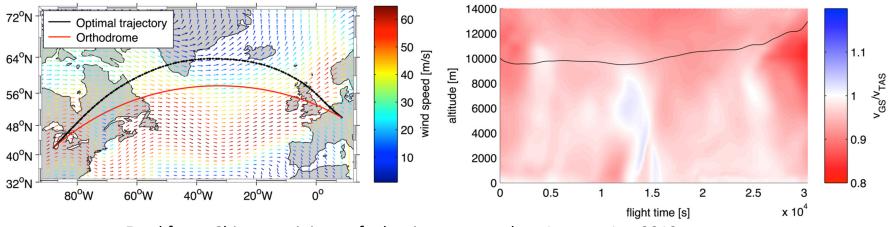

Choice of the costfunction

Results (quantitative)

Further assumptions

- v_{TAS} = 247.85 m/s
- H_p = 11278 m
- FF = 1.51 kg/s (A330-200, based on BADA 3.9)
- c_t = 1
- $c_{\Psi} = 0 \dots 1.4 \cdot 10^{13}$

Contents


- 1. Algorithm
- 2. Climate optimized trajectories
- 3. Current work

Current work

Improvements

- Integration of performance calculations within the optimization loop
- Modeling of engine emissions
- · Control variables: heading and thrust
- Variable altitude (3D-optimization)

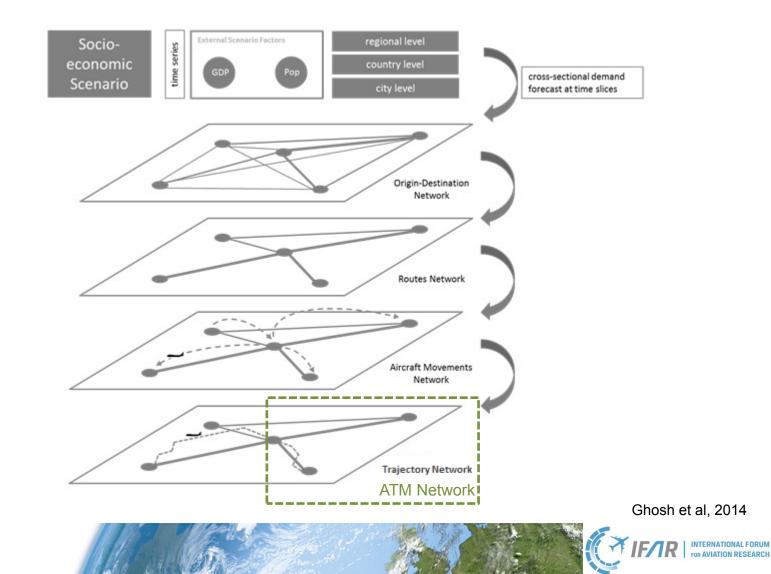
Frankfurt – Chicago, minimum fuel trajectory, weather: January 1st, 2012

Thank you very much for your attention

Knowledge for Tomorrow

Application of the Column Generation Method for Large-Scale Air Traffic Flow Management scenarios

Knowledge for Tomorrow


Jan Berling NASA/DLR Virtual Institute Event August 21, 2014

Project WeCare

4 layers approach

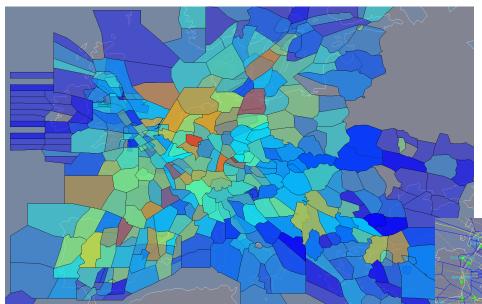
Agenda

- **1. NFE Network Flow Environment**
- 2. Column Generation Approach
- 3. Exemplary Results
- 4. Outlook

NFE – Network Flow Environment

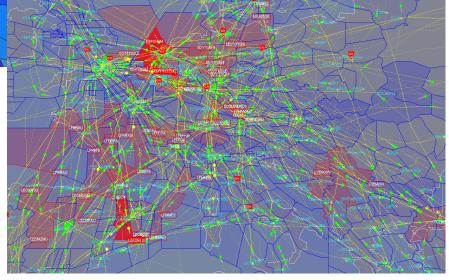
What is NFE?

- DLR's tactical Network Management model developed since 2011
 - → 1 Dissertation
 - → 4 Diploma theses
 - → 2 Publications
- → Model for the allocation of ATFM departure slots and pre-flight re-routings
- → Binary Integer Programing (BIP) optimization algorithm


How is it actually applied?

- Air Traffic Flow Management (ATFM) delay quantification due to adverse capacity impact and initiated regulations
- → Network performance quantification

NFE – Network Flow Environment



Air Traffic Management network

- lower and upper airspace
- sector network of ~640 Air Traffic Control (ATC) sectors
- around 20.000 airports
- underlying AIRAC cycle

Demand-Capacity-Balancing

- flight plan data from Network Manager
- network impact data, e.g. weather data
- qualitative mapping of network airport- and sector loads, network performance

Binary integer ATFM optimization problem

Cost Function

$$\min_{x} Z = \sum_{f \in F} \sum_{d \in D} \omega_{fd} x_{fd} \quad x_{fd} \in [0,1] \quad \text{Minimization of total system delay.}$$

Start Constraint

$$\sum_{d \in D} x_{fd} = 1 \quad \forall f$$

Every flight departs exactly one time.

Capacity Constraint

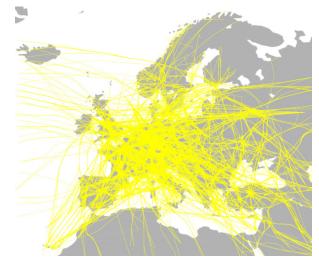
$$\sum_{f \in F} \sum_{d \in D} cto_{st}(f, d) \le cs_t \quad \forall s, t$$

Demand shall never exceed capacity.

Agenda

- **1. NFE Network Flow Environment**
- 2. Column Generation Approach
- 3. Exemplary Results
- 4. Outlook

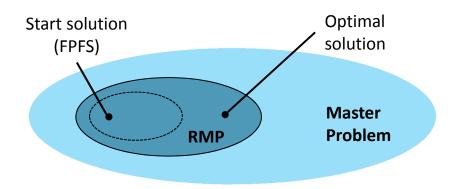
Large-scale ATFM scenario

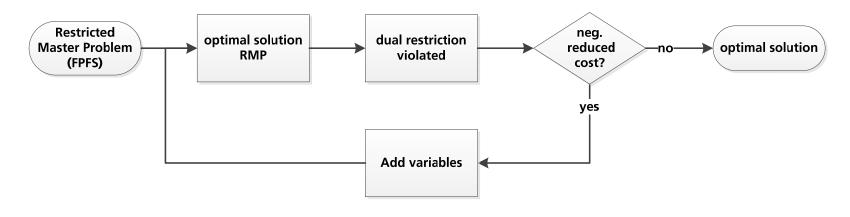

Motivation for column generation application

- Total 1-day scenario
- Complete European Air Traffic
- Gigabytes of memory usage
- · Weather impact data from different sources
- Regulation data for ATC sectors and airports
- First-Planned-First-Served (FPFS) start solution from a heuristic algorithm

Timeframe	Total [min]	1440
	Granularity (Slot) [min]	15
Movements	Flight Movements [#]	28.784
ATC Sectors	Quantity [#]	638
Airports	Quantity [#]	19.798
Regulations	Sectors	85
	Airports	126

Exemplary 1-Day scenario





Column Generation optimization approach

- Iterative solution process
- Uses a Restricted Master Problem (RMP)
- Starts with a feasible solution (FPFS)
- RMP's are solved by simplex algorithm
- Adds variables with delay saving potential

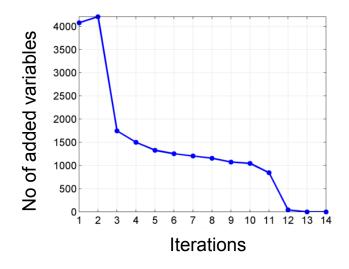
Agenda

- 1. NFE Network Flow Environment
- 2. Column Generation Approach
- 3. Exemplary Results
- 4. Outlook

Exemplary Results:

Total delay, calculation time and added variables

Total delay


FPFS [min]	170.475
Optimum [min]	15.975
Col Gen relative [%]	9,4

Number of variables

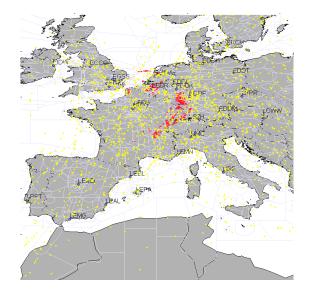
Total [#]	272.624
Column Generation [#]	44.261
Col Gen relative [%]	16,2

Calculation time

Simplex [s]	1.436
Column Generation [s]	64,4
Col Gen relative [%]	4,5

Agenda

- **1. NFE Network Flow Environment**
- 2. Column Generation Approach
- 3. Exemplary Results
- 4. Outlook



Outlook NFE model improvements

- · Integration of convective radar data within different forcast scenarios
- Application of the model within a European volcanic ash crisis mitigation concept
- Application of different routing concepts (free routing concepts)
- Integration of a Dynamic Airspace Management as an ATFM measure

Thank you very much for your attention!

Knowledge for Tomorrow