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Background on Ames 11x11 TWT

• 11- by 11-Foot Transonic Wind Tunnel (11-Foot 

TWT) Facility at NASA Ames Research Center in 

Moffett Field, California “has been instrumental in 

the development of virtually every domestically 

produced commercial transport and military fixed-

wing airframe since the 1960s. The facility is used 

extensively for airframe testing and aerodynamic 

studies and has played a vital role in every manned 

space flight program.” 1

• Closed-loop tunnel with Mach range 0.20 to 1.40, 

stagnation pressure range 3.0 to 32.0 psia, Rn 

range 0.30 to 9.6 million per foot.

• Airflow provided by 24 foot diameter, 3-stage axial 

compressor powered by variable-speed induction 

motors.
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1 https://www.nasa.gov/centers/ames/orgs/aeronautics/windtunnels/11x11-wind-tunnel.html



Unitary Plan Wind Tunnel
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Image from Baals, Donald D., “Wind Tunnels of NASA,” NASA SP-440, 1981.



Motivation

• Compressor was designed ~1950s. Aluminum blades were used to minimize 

weight due to rotordynamics concerns. These blades are sensitive to 

damage/erosion.

• Blades are inspected for impacts/damage every 50 hours and overhauled every 

2400 hours, wherein the blades are removed for sanding and penetrant 

inspection.

– Overhaul is approx. 1 man-year effort and 1 month of facility downtime.

• Re-blading with new hollow steel blades was planned to stretch inspections to 

200 hours and obviate blade overhauls.

• Several facility upgrades over 60+ years (flow conditioning devices, 

instrumentation) have increased tunnel blockage and reduced peak test section 

Mach number capability.

Opportunity to increase test section Mach number capability to 1.45+ by 

increasing compressor pressure ratio via new blade design.
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Compressor Case Split During Overhaul
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Spare Rotor Blades and Blades Awaiting Reburb
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Spare Rotor Blades and Blades Awaiting Reburb
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GRC Team In-between Rotor Disks
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Features of the Existing Compressor
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• 3-stage axial compressor with inlet guide vanes (IGVs) and exit guide vane (EGVs).

• 54 IGVs, 52 rotor blades per stage, 34 stator 1&2 vanes, 58 stator 3 vanes, 60 EGVs.

• IGVs are variable camber (hinged at mid-chord); IGV flap can vary from -7.5° (less pre-

swirl) to +19.5° (more pre-swirl). Nominal 0° position gives +33° pre-swirl into rotor 1.

• Hub and casing flow paths have constant radius of 8.5 ft and 12 ft respectively.

• Approx. 0.5 inch rotor tip clearance.

• Rotational speed ranges from 150-650 RPM (rotor tip speed 190-815 ft/s).

• Test section Mach number and Reynolds number are set by varying compressor speed, 

IGV camber, and compressor inlet pressure.

• At peak test section Mach number of ~1.45 (empty test section), compressor inlet 

corrected flow rate is ~7000 lb/s and compressor overall pressure ratio is ~1.4.



Cross-sectional View of the Compressor Case
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Design Constraints

• Rotor blade shapes may change, but blade count may not (re-use existing disks).

• Desire to keep new rotor shape identical across each stage to minimize 

tooling/fabrication costs.

• Stator vane shapes and vane counts may not change, but re-staggering existing 

stators is possible.

• IGVs must be remain unchanged due to complexities in removing/replacing 

actuators. May be possible to close IGV flap additional 2.5° for -10° total closure 

from nominal.

• Available margins in motor, shaft, and bearings should allow for increasing 

maximum rotational speed from 650 to 695 RPM.
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Operating lines for the existing compressor (left) and facility (right). Red lines indicate target for a new design.



Approach

• Model the performance of the existing compressor and 

compare to test data to calibrate numerical tools:

– Turbomachinery design/analysis code HT03002.

– Turbomachinery RANS 3D CFD solvers APNASA3 and ADPAC4.

• Iterate on new compressor design (within identified design 

constraints) using HT0300 to achieve at least a 10% 

increase in total pressure rise.

• Validate predicted performance of new design with CFD 

using APNASA.
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2 Hearsey, R. M., “Program HT0300 NASA 1994 Version,” Doc. No. D6-81569TN, Volumes 1 and 2, The Boeing Company, 1994.
3 Adamczyk, J. J., "Model Equation for Simulating Flows in Multistage Turbomachinery," NASA TM-86869, 1985.
4 Hall, E. J., Heidegger, N. J. and Delaney, R. A., "ADPAC v I .O - User's Manual," NASA CR-1999-206600, 1999.



Validating Tools Against Existing Data

• Existing compressor geometry with nominal IGV setting was used as input for HT0300 in 

analysis mode to generate performance predictions at 634 RPMC.

• Geometry definition was then used to generate meshes for CFD analysis using APNASA 

(905x51x51 grid). Initial APNASA simulation is referenced herein as “APNASA A”

• These two results were compared to data collected during a 1997 facility checkout.
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• Compressor hardware was examined for physical or geometrical features that were not 

included in the initial CFD simulations.



Potential Sources of Performance Mismatch

• Stator “button” endwall gap leakages: 

Resettable stator vanes have these gaps to 

avoid interference with flowpath hardware.

• Gaps can be gridded and included in CFD 

solution domain or modeled as periodic 

boundary conditions.
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Potential Sources of Performance Mismatch

18

• Under-stator cavity leakage driven by static pressure gradients at the 

stator hubs – these are typically sealed via labyrinth seals but are 

unsealed in this compressor.

• Leakage path can be gridded and included in the CFD solution domain 

or modeled as mass flow inflow/outflow boundary conditions along the 

hub.



Potential Sources of Performance Mismatch

• ADPAC was used to grid the under-stator cavities and generate a CFD 

solution.

• Total mass flow recirculation in each cavity was found to be approx. 

0.5% of compressor inlet mass flow rate, with reinjection angles of 25°

and 20° upstream stator 1 and 2 respectively.
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Meridional contour of static pressure showing the under-stator cavity flow 

recirculation, with absolute velocity vectors colored by axial velocity magnitude



Performance Impact of Modeling Stator Cavity and 

Button Leakages

• Additional APNASA simulations generated including stator 

Button gap leakages (APNASA B) and under-stator Cavity 

leakages (APNASA C).
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Performance Impact of Modeling Stator Cavity and 

Button Leakages

• APNASA B: Endwall gap leakage flow from 

pressure surface re-energizes low momentum 

fluid associated with corner separations on 

suction surface and hub/case

• APNASA C: Corner separation at hub is 

reduced due to smaller boundary layer driven by 

high momentum fluid leaking into the flowpath 

from the under-stator cavity upstream of the 

stator leading edge.
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Cross-passage contours of axial velocity at 70% chord of 

stator 3. 



Performance Impact of Modeling Stator Cavity and 

Button Leakages

• Stator cavity leakage and button leakage models rolled into APNASA *

• Performance comparison has improved but it is clear that computational 

stability and high loadings are problematic in the existing design.

• Stator cavity leakage and button leakage models were applied to new 

design iterations to capture physics of the real compressor.
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Diffusion Factor Limitations

• Diffusion factor for a compressor blade element is a design parameter which is 

correlated with loss, separation, stability. It is defined as:
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– 𝜎: solidity (chord/pitch)

– V1: Axial velocity at blade row inlet

– V2: Axial velocity at blade row exit

– ∆𝑉𝜃: Difference in inlet and exit relative tangential velocities 

Stator 3 diffusion factor predicted by HT0300 for 

a range of operating points with nominal IGV 

angle at 634 RPMC.

• Typically, losses spike for D>0.5 and flow 

separation from the suction surface of the blade 

leads to flow instability and compressor stall.

• Numerical tools suggest that the existing 

compressor operates at D>0.5 at high speeds, 

likely due to constant annular area which over-

diffuses the flow and the low solidity of stators, 

especially at the hub.



Recommendations for a New Design

• Design speed was increased from 650 RPM to 690 RPM.

• Rotor blade inlet and exit angles were modified to accommodate changes in 

incidence at this higher speed.

• Identical rotor blade shapes were used across all three stages.

• Existing stator 1 and 2 vanes were re-staggered to reduce incidence angles.

• New airfoil shapes for stator 3 and EGV were proposed which incorporated an 

increase in hub radius from 8.5 ft to 9.4 ft.

• Stator 3 chord was increased by 15% at the case and 21.5% at the hub, resulting 

in approx. 14% increased solidity averaged across the span.
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Recommendations for a New Design

• Proposed design increases overall total pressure rise by 10.5% with a 

corresponding decrease in stator 3 diffusion factor of 50%.

• It is estimated that this design may increase tunnel Mach number 

capability to 1.50.
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