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Contest: Cooling in HP Turbine Blades

O High load (almost %2 of enthalphy
drop in 1 or maximum 2 stages)

O Higher TIT (~ 1600 °C) allows
better performance
VS
4 thermal resistance (< 1000 °C) +
mechanical stresses

» Materials & Cooling

’ RR Trent 1000
cutaway

A Longer Life-time (~ 10* hours)

» lower replacement costs
(~ 10 k€ / airfoil)




Internal Cooling by Forced Convection

O Wide literature
0 Complex 3D and unsteady flow

O Heat transfer prediction accuracy
by RANS

=~ 10+15%

(most of the time based on isotropic
turbulence and constant Pry)

J Demands

o Understanding of the physics

o Experimental data support for CFD
improvements



Internal Cooling by Forced Convection

O Wide literature
0 Complex 3D and unsteady flow

O Heat transfer prediction accuracy
by RANS
=~ 10+15%
(most of the time based on isotropic
turbulence and constant Pr;)
O Demands
o Understanding of the physics

o Experimental data support for CFD
improvements

Research Contribution

High accuracy, high resolution
and detailed measurements




Goals

4 Intermediate link between Heat
Transfer and Flow velocity
measurements (available in
literature) by Flow Temperature
Data

O Contribution on Reynolds
stresses and turbulent heat

transport term Momentum and thermal equation
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LIF thermography
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LIF thermography

O Choice of the technique
o Non-intrusive
o 2D measurements
O Laser intensity & Tracer
concentration variations?
o I; = f(t) — reference to normalize

o C depends on the local mixing

O Multi-line approaches

o Two — color: independent to laser
power and tracer concentration

 Intensity ratio Ry of two
different spectral bands

1-color:
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LIF thermography

O Choice of the technique
o Non-intrusive
o 2D measurements
O Laser intensity & Tracer
concentration variations?
o I; = f(t) — reference to normalize

o C depends on the local mixing

O Multi-line approaches

o Two — color: independent to laser
power and tracer concentration

 Intensity ratio Ry of two
different spectral bands

O Gas-phase LIF tracer (acetone
or toluene)

El excited singlet states
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Mixture Prandtl number
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Mixture Prandtl number

NASA CEA (Equilibrium) algorithm
[McBride 1994] used with original
species
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Measurement cell

3 50x50x90 mm?3 aluminum cell

O Optical accesses with quartz plates
(laser + cameras)

1 Temperature control and
acquisition by 4 thermocouples

] Tracer access

O Mixing by a fan

O Heated from the bottom (heat gun)



Two-color acetone measurements

1 Selection of the two bandwidths

based on VKI's spectral
measurements

O Experimental set-up

O

O

UV-laser (266nm and 532nm)

Laser optics (2 dichroic mirrors +
spherical lens)

Measurement cell

2 perpendicular cameras
2 band-pass filters

ND filter at 45°

Camera lens (100mm fused-silica
spherical lens)

Air-acetone vapor mixture

SHX350 \ XUL0385

300 350 400 450 500 550

Wavelength [nm]

Laser head Laser optics

) Cell
R s I

Camera filters

Camera lens
Camera 2 Cube with 45° ND

/« filter

Camera 1l

Bellow




Results and Conclusions
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Results and Conclusions

1 46% decrease corresponding to LR e e I
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Results and Conclusions

1 46% decrease corresponding to

7.3% for 95% confidence level

50°C temperature difference

O Uncertainty of 7.3% for 95%
confidence level = +8°C
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Results and Conclusions

Q 46% decrease corresponding to 11 { 7.3% for 95% confidence level |-
50°C temperature difference T i
d Uncertainty of 7.3% for 95% A dob % :
confidence level = +8°C 2 || :
Iy 46% ¢ z
A 0.7 ~ ':
: E i .
O Encouraging dependence of R¢ %’* ol % §
with temperature but: v | iE
05 -
o Low signal = high uncertainty i AT=50°C
o No evidence in literature (no two-color 0'440‘ - ‘5'0‘ ~ 60 70 80 ‘9|o‘ ~ 100
acetone studies) Temperature [°C]

O Spectral measurements of acetone
fluorescence



Acetone Spectral Measurement

Photodiode Signal output

Dichroic
Laser head MIrors

O Laser energy reference - )
measurement by photodiode

Attenuation optics and

O Spectrometer + ICCD camera filters

\45 Cel
,

Quartz plate

‘ V74

o Quartz plate at 45° reflect 1+5% light
at 90°

o Optics attenuate light and cut down the
green component Spectrometer

o Photodiode produces signal CC light
intensity

o Signal integrated by a Box Averager
and sent to the acquisition system




Results and Conclusions

S(T, A/S(T=20°C, A=400nm)
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1 Clear dependence of the signal 1 —T=40°C
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Results and Conclusions

S(T, A/S(T=20°C, A=400nm)
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Results and Conclusions

S(T, A/S(T=20°C, A=400nm)

1 Clear dependence of the signal
with temperature

L Not appreciable red shift or shape
change

O Theoretically two-color technique
not possible with acetone
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S(T, N)/S(T, A=400nm)

O Other phenomena we do not take
Into account

O Other tracer (toluene or anisole) or
one-color technique

O Need of testing in a continuous
flow (2D internal flow)
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Facility

O Existing aluminum channel
o with high aspect ratio (W/H = 6)

Mayo 2013
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Facility

O Existing aluminum channel
o with high aspect ratio (W/H = 6)
o re-designed optical accesses

o Heated bottom wall with thin
resistances

O Piping of PE100 DN50 mm:

o Seeding air with fluorescent tracer

o Control mass-flow and tracer
concentration with two orifice plates

o extraction

wind
tunnel

LIF
tracer

pressure N
regulator
7 bar
pressure
line N
mass-flow

meters




Facility

O Existing aluminum channel
o with high aspect ratio (W/H = 6)
o re-designed optical accesses

o Heated bottom wall with thin
resistances

O Piping of PE100 DN50 mm:

o Seeding air with fluorescent tracer

o Control mass-flow and tracer
concentration with two orifice plates

o extraction pressure Y
_ _ wind regulator
O Supports (aluminum profiles and tunnel LIF
corners) tracer
_ 7 bar
O Instrumentation (Laser and pressure
Cameras) mass-flow iine ~

meters



Flow characterization with PIV

40 |
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Velocity profile with PIV

d Fully turbulent and fully developed
velocity profile at Rey = 6700

40 |

O Reynolds stresses for the E' 2
determination of u,, u* and y* > |
O Match of the logaritmic law 10
(x =0.37, B =5.1) ’
U2
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O PIV data
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Air-Toluene LIF measurements

O Experimental set-up

o Laser and optics (as in spectral
measurements) + mirror

o |ICCD camera provided by Semrock
Razor Edge 266nm and 400 nm Low
pass filters

ICCD
0 Methodology Camera

o 10 images of a dotted plate (spatial
calibration)

o 10 images of background BG

o 100 images of fluorescence at iso-
thermal conditions 1,5 (Flat Field)

o 100 images of fluorescence with the
bottom wall heated around 70°C Iy,




Results and conclusions

O Traverse measurements with a
type-K thermocouple probe




Results and conclusions

O Traverse measurements with a
type-K thermocouple probe

L Two-points temperature calibration
with linear function

T=a+bxI"

0 Comparison of the averaged I*
(red line) with the thermocouple
output (black circles)
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Results and conclusions

Traverse measurements with a
type-K thermocouple probe

Two-points temperature calibration
with linear function

T=a+bxI"

Comparison of the averaged I*
(red line) with the thermocouple
output (black circles)

\Vs

Good match of the temperature
profiles with missing points

Uncertainty of 10% = £12°C
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Results and conclusions

Traverse measurements with a
type-K thermocouple probe

Two-points temperature calibration
with linear function

T=a+bxI"

Comparison of the averaged I*
(red line) with the thermocouple
output (black circles)

\Vs

Good match of the temperature
profiles with missing points

Uncertainty of 10% = x12°C 7 _

= blow nitrogen

Y [mm]

30 40 50

Temperature [°C]




Nitrogen-Toluene LIF measurements

O Higher signal (20 times higher with no
oxygen content)

= higher S/N ratio = lower 61"

ST ~ O8I AT
- Al*



Nitrogen-Toluene LIF measurements

O Higher signal (20 times higher with no
oxygen content)

.ﬂ;; 7
= higher S/N ratio = lower &1* £ oot "
O Higher temperature dependence iIT E wl .

o o
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I *
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Faust 2013
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Nitrogen-Toluene LIF measurements
Air

O Higher signal (20 times higher with no
oxygen content)

= higher S/N ratio = lower 61"

Al*

O Higher temperature dependence e

AT
AT*

= |lower

ST ~ O8I AT
- Al*

1 Measured signal 10 times higher

1 Decrease of camera noise from 13%
to 8%




Temperature calibration

L In-situ calibration

O Flow temperature inscreased by a
heater

O Thermocouple at the exit to control
the operating conditions



Temperature calibration

L In-situ calibration

O Flow temperature inscreased by a
heater

O Thermocouple at the exit to control
the operating conditions

O Calibration Methodology:

o Heater & Thermocouple probe at 4
different positions along the channel
height and the thermocouple at 3
different horizontal positions



Temperature calibration

L In-situ calibration

O Flow temperature inscreased by a
heater

O Thermocouple at the exit to control
the operating conditions

O Calibration Methodology:

o Heater & Thermocouple probe at 4
different positions along the channel
height and the thermocouple at 3
different horizontal positions

o Heater & LIF laser sheet at different
positions along the channel height



Conclusions and Future Work

Innovative information by addressing Flow Temperature Data
Preliminary results are encouraging
Design of a novel Facility

Flow characterization

Match of the temperature profile with air-toluene one-color LIF

0O O OCO0OO0OOD

Nitrogen-toluene one-color LIF upgrade with significant decrease of noise



Conclusions and Future Work

O Innovative information by addressing Flow Temperature Data

Q Preliminary results are encouraging

O Design of a novel Facility

O Flow characterization

O Match of the temperature profile with air-toluene one-color LIF
O Nitrogen-toluene one-color LIF upgrade with significant decrease of noise
O Nitrogen measurements

O Apply the in-situ calibration designed

O Further analysis (e.g. temperature fluctuations)

O PIV/LIF set-up = v'T’ and Pr;

O Application of ribbed channel
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Rolls Royce Trent 1000

Application Boeing 787

By-pass Ratio (10.8+11):1

Combustion Chamber Length 474 m

Fan L P. Turbine Diameter 2.85m
Dry Weight 5,765 kg

Compressor 1LP,81P,6HP

Combustor Tiled

Compresor H.P. Turbine Turb-ine 1HP,11P,6LP
Maximum Thrust | 276+376 kN

Pressure Ratio 52:1

Air mass-flow 1,290 kg/s

Thrust/Weight 6.189:1




TIT evolution
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Cooling Techniques

» (a) forced convection
» (b) Impingement

Ei -Rib turbulators (a) =
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Project Profits

Fundamental improvements
U Understanding of the Physics
L Modeling & Validation

o Aero

o Thermal

TKE/UEZ 0.00 0.02 0.04 0.06 0.08 0.10

Practical contribution
O Higher TIT — higher n¢, & N

O Lower m yo1qnt
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Flow field

flow
P V.
leading side
Y Z
, ——
. : Coriolis-induced s.ecctmdary flows / velocity profile
' rib-induced secondary flows at symmetry plane
I
A : buoyancy-induced
' near-wall flow
incoming ' (radial inward)
boundary layer +— TS e e e R Ry T R R e e s L
(radial outward) > - NN
T /
recirculation bubble /

rotation axis

S 4 I
. trailing side



Flow field

flow[

:%/ ,:- ------- % ------------- - % -------- T

|J reattachment length E_I

I~ >

separated shear layer ‘

reattachment point
incoming boundary layer .
ﬁ Cbsepamﬁgn bubble developing boundary layer
upstream downstream

corner vortex corner vortex

averaged internal flow field



Flow field (TR-data)

Cardwell (2011) flow

> rib wake at reference state

» turbulent instability of the mixing
layer — 2 counter rotating vortexes
— relative high velocity jet

» mixing layer displacement into the
core flow

» rapid ejection of the separated
inter-rib region

» shear layer reorganization

100 101 102



Two-color LIF thermography

Signal

L Acetone for low toxicity, no oxygen Ir(A) = Kope (DK spoc (DVeL, CePDIT

guenching, high pressure vapour

. _ _ _ Intensity Ratio
Q1 Filters selection with available RA(T) = Irn  Kopen o (ﬁl [»’2>
spectral data of acetone f Ity Kopta T
O Requirements
o 1 UV laser source Filters Transmission/Acetone signal
| SHX350
o 2 cameras ! 1
\ XULO0385
Iy 6
ln(T) = Second color band A€ [525.535|nm
0.4 T|. Firstcolorband 432590 nm
0.3 g Slope B, =1730K
0.2 P d
A 1 a Slope B, =100K
¢ 011 d
03+ Lavieille 2014 % 300 350 400 450 500 550

Wavelength [nm]



Preliminary Study

Image Camera 1
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Image Camera 1 R=f(T)
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Processing

O Background
Ipx(,j) = 11(i,j) — B(i,))

Iy 1 400 images b2 400 images
O Spatial Calibration

ﬁ
Iex () = C(0,J) * Ip,1 (i)
O Intensity ratio

I 1 K ,1 ﬁ B IB

f.2 opt,2

d Averaging (over 400 images per —
experiment) jesor

SES SRR (C5VF 25 5 - U
&M ‘B o ﬂ'd —(m»ﬂ




Results and Conclusions

-

1 46% decrease corresponding to
50°C temperature difference

Y [mm] o
O Uncertainty of 7.3% for 95% 0.2
confidence level 1.
Q Encouraging dependence of R, B e e
with temperature but: X [mm]

o Low signal = high uncertainty

o No evidence in literature (no two-color | 7.3% for 95% confidential level |
acetone studies)

yy T ¥ =-09mm
X=-2mm

d Spectral measurements of acetone o” |
fluorescence 46% |°| !
A 4 506 % 4
05 E_

0:440 5IO AT:SOO C QIO 100




Processing

For each temperature (4) and spectral
range (5)

[ Background subtraction

O Laser Intensity normalization

L Average of the corrected samples
Q

Average in space (Y-direction)
Inside laser beam

O Intensity Calibration with Halogen
and Tugsten lamps

Cali,o.(A) — BG(N)

SQ) = (Srec(}‘) - BGO\)) X Caliipe (D)

I 500 images
Y [pixels]

A [nm]

[ avg G

T —

A [nm]

\Vs

| [c&h nts:]h_g

1600
1400
1200
1000

800

.360 380 400 420 440 480

)\v [nm]'



Turbulent Prandtl number

Momentum & Thermal boundary layer Equations

_ou , _odu_ 1dP 0 ou [~ ,) Boussinesq Approach:
x) uax+vay_ pdx+6y(vay uv ou
Tt = PHe 5
X) 724 5o a(aa_T_@ o
dx dy - ady dy - —
c oT
— o+ —
dt = PLpQt Jy
Turbulent Prandt! Number
Ht
PTt —_
a

.= 0U —m7 oT
I 441 rri
by measuring u'v’, 3 Y T' and 3



Validation and Modeling

Contribution for CFD
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O Comparison of engineering quantities: Q (or EF), 7, AP,
O Comparison of mean and rms values of velocity and thermal fields
O Direct contribution on u’v’' and v'T’
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Measurement cell

U O

50x50x90 mm3 aluminum cell
Optical accesses (laser + cameras)

Temperature control and
acquisition by 4 thermocouples

Tracer access
Mixing by a fan

Thermally insulated by 15 mm
layers of foam

Heated from the bottom (heat gun)




Spectral Measurement set-up
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Test section for 2D internal flow

O Existing aluminum channel with
high aspect ratio (W/H = 6)

L Embedded with Wind tunnel
components
o Diffusor

o Settling chamber with screens and
honeycomb

o Contraction

1 Re-designed optical windows with
guartz slots

1 Heated bottom wall by thin
resistances




