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Resolution requirements for aircraft wing (Re_ = 2x107)

DNS

t Out of reach > 10> mesh points

Feasible in 2025 ~ 10 mesh points

l Feasible in 2000 ~ 102 mesh points
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Resolution requirements for aircraft wing (Re_ = 2x107)

DNS

t Out of reach > 10> mesh points

Feasible in 2025 ~ 10 mesh points

l Feasible in 2000 ~ 102 mesh points

Near-wall modeling is here to stay for the next 20 years for analysis

Many other use cases: Full flight envelope, Parameter sweeps, Design,
Trajectory prediction, mission planning. RANS will never go away.



Data deluge...

 DNS and LES have been
produced in quantity

* Experimental PIV and MRV
high-res data sets

slat89
main96

flap96

* Data sets have not had a substantial impact
on closure modeling




Commercial example : Face recognition

Data
Mathematlcal mc?del + No physical law ;
+Machine Learning e Datais directly
useful for model;
 Large amounts of
relevant data.
Predictive

capability




Can we replicate this type of success in turbulence modeling?
Data

Physical model + Physics
constraints + Machine
Learning
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capability




Challenges
Data

|

Physical model + Physics
constraints + Machine
Learning

Predictive
capability

Data contains real quantities; Model
contains “modeled” quantities (loss of
consistency is severe in turbulence
models)

=» k and in the model are not the k
and eps in DNS

Data will be only loosely connected to
model (and not objective)

=» How to improve a turbulence
model if we only have pressure
measurements (or images)?

Data will be noisy and of variable
quality,

Inherent uncertainty
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Turbulence models
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* One - seven transport egns, and up to 30 adjustable constants.
* Modeling rests on large amounts of intuition and luck, in spite of
starting with a “rigorous” approach
* Theories abound for parts of model, but not for output
 Model constants calibrated on very limited data
* Greater sophistication in RANS models, with mixed degree of success
=» More constants to fit, still use canonical problems



Turbulence modeling
discrepancies
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e Balance between the terms matters most (and not accuracy of
individual terms)
=>» Still respect invariance, symmetries, etc.
 Many “seemingly physical” quantities are just operational variables
=>» Use of apriori analysis is of limited utility
* There is no beautiful turbulence model waiting to be discovered
=>» Look for optimal model, conditional on data & constraints?



Turbulence models — inherent uncertainty
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Questions at the beginning of the program

* Isthere meritin the general idea?

e How to setup a properly-posed data-driven-turbulence-modeling
problem ?

 What are the most effective ways to use Machine Learning
approaches?

 What data (and how much data) is needed to improve the
predictive capabilities?

 What are the new modeling techniques and algorithms that must
be developed to make these approaches a reality?

 What improvements can be shown in a number of flows of
interest?

* Once a model has been learned, how is it best embedded in an
existing RANS solver?
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Proof-of-concept

¥ Basic questions: Can machine learning work at all?:

» Can a learning algorithm discover and replicate a known
model?

»  Will the learned model destabilize a PDE solver?

¥ Isolate errors in learning from complexities of real-world
data

Not just a matter of learning and prediction... Have to
address convergence within framework



Proof-of-concept : Replicating Spalart Allmaras Model
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Proof-of-concept : Replicating Spalart Allmaras Model
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Procedure

1)

2)

3)

4)

5)

Select representative datasets

Flat plates, pressure-driven
channels, airfoils

Choose and extract input and output
features

Spalart-Allmaras quantities
Select learning algorithm
Neural network
Train learning algorithm
BFGS optimizer

Embed learned model within flow
solver

SU2

Solver
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Ity

6666 9
o

]




We can learn and we can test, but ...

¥ Favorable pressure gradient channel flow
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¥ Injection within a converging solver yields poor
results



The loss function

¥ Sguared-Error
k
L= Z(pz —t;)”

» Penalizes differences in the output value

¥ Dimensionalized Squared-Error
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» Penalizes differences in the dimensional output value




The loss function

Source

Non-Dimensionalized Source Term
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Test cases
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Test on 3D problem
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Takeaways

¥ Feature Scaling is important
¥ Testing within the CFD solver

¥ Alignment of loss function

If there is an underlying model, it is possible to
discover it

Tracey, Brendan & Duraisamy, Karthik, & Alonso, Juan J. A Machine Learning

Strategy to Assist Turbulence Model Development, Proc. AIAA SciTech,
Kissimmee, FL 2015
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Field Inversion & Machine learning (FIML)

Datasets YLly2..y"

Information |Spatial discrepancy

\4



Field Inversion & Machine learning (FIML)

Datasets Y1Y2..Y"

= R(Q)+ 53(33) : gl(ia{l) HYj — YJ(Q)H

Information |Spatial discrepancy 51 (gp)7 52 (Qj)’ .. 5” (QL‘)

Knowledge |Functional discrepancy S( f(Q) )

v




Field Inversion & Machine learning (FIML)

Datasets Y1Y2..Y"

Information |Spatial discrepancy 51 (gp)7 52 (Qj)’ .. 5” (QL‘)

Knowledge |Functional discrepancy S( f(Q) )

D@ A
Embedding 59 o 57(@)

Prediction : Injection into solver




Major insight from NASA LEARN project

Information |Spatial discrepancy 51 (gp)7 52 (Qj)’ .. 5” (QL‘)

Knowledge |Functional discrepancy S( f(Q) )

v




How does it address the challenges?

Data

.

Physical model + Inference

v

Machine learning

|

Physical model + consistent
augmentation

Predictive
capability

 Data contains real quantities; Model
contains “modeled” quantities (loss of
consistency is bad in turbulence
models)
=» Inference connects real quantities
to modeled ones

 Data will be only loosely connected to
model (and not objective)
=» Inference connects secondary,
non-objective data to model quantites

e Data will be noisy and of variable
quality, inherent uncertainty
=» Probabilistic casting of inference
and learning
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Step 1:
Inversion




Dw

Dt

DRZ']'

Dt

= Cyy + Py + 1o + 15 + Dy

DRij
Dt

Introducing discrepancies

— Pw — @ w _|_ Tw Singh & Duraisamy, PoF 2016

Parish & Duraisamy, Aviation 2014

Eij

aow(Rijeq — Rij)

Singh & Duraisamy, Scitech 2016

% + V(A @VT:

Duraisamy,
SIAM 2016



Bayesian FUNCTIONAL Inversion
Bmap = arg min % |:(d — h(,B))TCm_1 (d — h(,B)) T (,3 — ,Bprior)TCﬂ_] (,3 — ,Bprior)]

d — Data

B - Unknown function

h(B) — Model output

C, - Observational covariance
C; - Prior covariance

Parish, Eric & Duraisamy, Karthik, A paradigm for data-driven predictive modeling using field
inversion and machine learning, Journal of Computational Physics, Volume 305, 15 January
2016, Pages 758-774 2016




Posterior

O i ()0
posterior d ,3 d ,8
Brmap
0%3 %R, 8Rm 0%y 0’R,
Hij 8,8 8,3 wm(‘?ﬁ (9,6 Mlmaﬂ Vlma 8,3 Vlnwma (9,3
where,
. ORwm __ORu
b Bun N 8,6,
ORm O0%F 0% R, 0%3 %R,

—Vij.n

Him g~ 9B.0m Cm0B.0u " dumdum ™ durdu

An approximate Hessian computation is additionally used for
Ill-posed problems

More complete PDFs with accelerated MCMC (with P. Constantine, Colorado Sc. Of Mines)



Example 1: Flow over a bump — Field inversion
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Ng
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LES
Prior
Posterior
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LES
Prior

Posterior

Secondary quantities

Data-driven augmentation of turbulence

models for adverse pressure gradient flows AP

Singh, R Matai, K Duraisamy, P Durbin, Proc.
AIAA Aviation 2017

10°

-0.004

-0.003

0.002,
u'v'/Ug




Example 2: Curved channel
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Singh, A.P. & Duraisamy, K. Using Field Inversion to Quantify Functional Errors in Turbulence
Closures, Phys. Fluids 2016
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Example 3: Airfoil

Inversion based on Pressures
VS

Inversion based on LIFT!
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Ability to work on sparse amount of data is

critical

1.0



Step 3:
Machine
Learning




How to transform information to knowledge?




Selection of Features

Step 1: Look inside the baseline model

A ~ d2
x="V/v Q:\M—VQ
_ d? X _ 1
S”_(V+v)2s”_c”1(1_ﬁ2)(x+1)(Q K2x+1ﬁ2)

_ d? x \’

Sd = (0+V)2sd — (m) Cwifw
Step 2: Look for relevant physics
S/ 1L, s, /54

Step 3: Feature-subset selection*

Hill-climbing algorithm Kohavi, R. et al. “Wrappers
for Feature Subset
] ] Selection,” Artificial
Features locally non-dimensional Intelligence, 1997



Evaluation

Neural Networks

GP regression

Multiscale GP regression*
Symbolic regression

IBtest
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*Sparse Multiscale Gaussian Process Regression Using Hierarchical Clustering, Z.
Zhang, K. Duraisamy, N. Gumerov, Applied Numerical Mathematics 2017




Machine Learning Requirements

Highly multidimensional
Since learning is in feature space, very highly multi-scale (coarse & rich)
Multiscale learning is an active research area

The training stage requires solution of a large ill-posed linear system of
algebraic equations

Regularization and speedups of solution can be achieved via employment of
methods for efficient complexity reduction, including

— Construction of compact bases via data structures
— Nystrom methods (low-rank approximations)
— Preconditioned iterative procedures
— Specially designed Krylov subspace methods
The test stage requires fast procedures for large matrix-vector products

Computation of predictive variance can be also done efficiently using low-
rank decompositions



Pivotal platform

Master Servers
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+ Analytics
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Scalability of Parallelized NN Implementation

* Tests done on duplicated LES dataset
— Model fits stayed relatively the same (no improvement due to
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Boosting implementation proved to be linearly scalable up to at
least 500 million rows of data
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Multiscale GP : Model

input  noise weights  basis functions
output A/ D\ J
y=Fx)+e€, F(x)=6¢x)'w =Zw,~¢,-(x), € ~ MO0,0?),
i=1 R

feature space design matrix noise variance
™\ \/
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N
extended feature space training point
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n = 500 uniform random distribution in [0,1] x [0,1]
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— S805

— S809 |]

— S814

Prediction in Airfoil
flows

Singh, A., Medida, S. & Duraisamy, K., Data-
augmented Predictive Modeling of Turbulent

Separated Flows over Airfoils, AIAA Journal,
2017.

0.8

1.0

Training set =

S814 at Re = 1 x 10°,2 x 10°




Inversion based on Pressures
VS
Inversion based on LIFT!

— Experiment

— Base SA
— Inverse SA based on C,
- = Inverse SA based on C,

0.2 0.4 0.6 0.8 1.0

X/C

Ability to work on sparse amount of data is
critical
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Experiment
Base SA

Inverse SA
Neural Net SA |

0 05 1
X/C
(a) Base SA

X/C

0.5
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0.6 0.8 1.

X/C
(b) Inverse SA

True prediction !

Singh, A., Medida, S. &
Duraisamy, K., Data-
augmented Predictive
Modeling of Turbulent
Separated Flows over Airfoils
Submitted, AIAA Journal,
2016 (arXiv)

X/C
(c) NN-augmented SA (prediction)
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True prediction !
S 809, Re=2 Million

Inference used only CL data, NN-augmented model provides
considerable predictive improvements of Cp




1.5

« « Experiment Variabil |ty
1.0 — Base SA 1
—— Neural Net SA

S 809, Re=2 Million
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S809 Airfoil : Predictive results in Commercial CFD solver



Robustness:
Implementation in AcuSolve
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S809 Airfoil : Predictive results in Commercial CFD solver



Outline

Introduction
Proof-of-concept
How do we setup the data-driven turbulence modeling problem?
What are the components?
Demonstration
=>» Predictions in Airfoil flows
Dissemination / impact
Vision / Perspectives



Dissemination :
UM/NASA Symposium

Attendees: 88

3 i
NASA + Other National labs: 12+ 8 = 20 i ’
U of M + Other academia:22+31 = 53 = “’ ]"l 1
Industry = 15 il
TY OF MI
ARBOR,
11,1213, 20
Timeline:

Feb 28, 2017: 1Page abstract due
Mar 30, 2017: Acceptance notification
May 15, 2017: Final agenda posted
Apr 15- Jun 15, 2017: Open registration

turbgate.engin.umich.edu/symposium

Status, Emerging Ideas and Future Directions of

Turbulence Modeling Research in Aeronautics
K. Duraisamy? P.R. Spalart! C.L. Rumsey*



Dissemination

- AFRL starting a 6.3 project in data-driven turbulence
modeling!

- In talks with DLR Braunschweig
- Project website

- Participation in NASA/Stanford Summer Turbulence
Research Program (2014/2016)

- Presentation at NASA Langley (2013/2014/2016)
- Visit by Gary Coleman to Michigan (Dec 2014)
- Discussion with Big data analytics group at NASA Langley

- Discussions with several NASA researchers (Ames,
_Langley)




Some Key papers

Singh, A.P. & Medida, S. & Duraisamy, K. Machine Learning-augmented
Predictive Modeling of Turbulent Separated Flows over Airfoils, AIAA
Journal, Vol. 55, No. 7 (2017), pp. 2215-2227. 2017

Duraisamy, K. & Singh, A.P. & Pan, S. Augmentation of Turbulence Models
Using Field Inversion and Machine Learning, Proc. AIAA SciTech, Grapevine,
TX 2017

Singh, A.P. & Duraisamy, K. Using Field Inversion to Quantify Functional
Errors in Turbulence Closures, Phys. Fluids 28, 045110 2016

Parish, Eric & Duraisamy, Karthik, A paradigm for data-driven predictive
modeling using field inversion and machine learning, Journal of
Computational Physics, Volume 305, 15 January 2016, Pages 758-774 2016

Tracey, Brendan & Duraisamy, Karthik, & Alonso, Juan J. A Machine Learning
Strategy to Assist Turbulence Model Development, Proc. AIAA SciTech,
Kissimmee, FL 2015

Duraisamy, Karthik; Zhang, Ze Jia & Singh, A.P.,, New Approaches in
Turbulence and Transition Modeling Using Data-driven Techniques, Proc.
AIAA SciTech, Kissimmee, FL 2015




Also

Data-driven augmentation of turbulence models for adverse pressure
gradient flows AP Singh, R Matai, K Duraisamy, P Durbin, Proc. AIAA
Aviation 2017

* Singh, A.P. & Pan, S. & Duraisamy, K. Characterizing and Improving
Predictive Accuracy in Shock-Turbulent Boundary Layer Interactions Using
Data-driven Models, Proc. AIAA SciTech, Grapevine, TX 2017

 Zhang, Z. & Duraisamy, K. & Gumerov, N. Efficient Multiscale Gaussian
Process Regression using Hierarchical Clustering, Submitted, Machine
Learning Journal, 2016

e Duraisamy, Karthik & Singh, A.P., Informing Turbulence Closures With
Computational and Experimental Data, Proc. AIAA SciTech, San Diego,
CA 2016

 Zhang, Ze Jia & Duraisamy, Karthik, Machine Learning Methods for Data-
Driven Turbulence Modeling, Proc. AIAA Aviation, Dallas, TX 2015

e Parish, Eric & Duraisamy, Karthik, Quantification of Turbulence Modeling
Uncertainties Using Full Field Inversion, Proc. AIAA Aviation, Dallas, TX 2015

* Duraisamy, Karthik & Durbin, P.A., Transition modeling using data driven
approaches, Center of Turbulence Research, Proceedings of the Summer
Program 2014




Growing community for data-driven turbulence modeling
— thanks to NASA LEARN |

2013: Tracey, Duraisamy, Alonso (ML for non-parametric UQ)
---------------- LEARN BEGINS Jan 2014 ---------------------

2014: Duraisamy et. al (Inversion + ML for model
improvement)

2015: Ling & Templeton, Weatheritt & Sandberg (apriori ML)
2016: Xiao et al. (ML for model improvement)

2017: Fabbiane, Mishra, laccarino, Edeling (physics, data-
based)

Also, Dwight, Cinella, Arunjatesan et al.,

Companies: Altair, Inc. ; UTRC;
Labs: AFRL, DLR



Field Inversion + Machine learning to
Augment Physics-based, Consistent Models

Data

.

Physical model + Inference

v

Machine learning

|

Physical model + consistent
augmentation

Predictive
capability

Data contains real quantities; Model
contains “modeled” quantities (loss of
consistency is bad in turbulence
models)

=» Inference connects real quantities
to modeled ones

Data will be only loosely connected to
model (and not objective)

=» Inference connects secondary,
non-objective data to model quantites

Data will be noisy and of variable
quality, inherent uncertainty
=» Probabilistic casting of inference

and learning



Perspectives 1/2

* Framework: Data -> Information -> Knowledge -> Prediction
 Machine learning
=» Can function as indicator
=>» Is an optional step
=» Can be fed by theory and asymptotics
* If thereis an underlying “exact” model, we can discover it
* Thereis no (and will ever be a) universally accurate model waiting
to be discovered
=» Optimal model, conditional on data and assumptions possible
=>» Avoid tendency to overfit
=>» Small number of sensible features (Galilean invariant)
=» Absolutely the most sensible thing to do in an industrial setting
(Lots of data for a class of problems, Lots of expertise/knowhow)



Perspectives 2/2

Modeling has ALWAYS been data-driven & we have always been using
machine learning (and inversion too)

Data-driven approach is not a substitute to turbulence modeling
Data-driven approach is not a new way of modeling. It is a new tool.
“Kitty Hawk” Stage. Community effort required

e Uses (other than prediction):
=» Model credibility: Can validate/invalidate model structures
=» Uncertainty quantification: Can obtain modeling error bounds
=» Robust design
=» Feature selection
=» Input for modeler (forget machine learning)



Vision
A continuously augmented curated database / website of inferred
corrections that are input to the machine learning process

Users upload/download/process data, generate maps.
o) M ESE=

UNIVERSITY OF
MICHIGAN

Turbulence Modeling Gateway it

Home Team Research Publications Symposium 2017 Support~

Welcome to the Turbulence Modeling Gateway Server. The goal of our project is to develop new techniques for turbulence modeling.
We are exploring a range of techniques including data-driven techniques, advanced structure based modeling and hybrid RANS-LES
methods from a predictive modeling as well as an uncertainty quantification context. We treat all these techniques as natural allies in Enter email
the broad goal of turbulence model improvement.

Email

Password
Currently, the prime focus of our efforts is on the development of the science behind data driven turbulence modeling and
demonstrate the utility of large-scale data-driven techniques in turbulence modeling. Our work involves the development of domain-
specific learning techniques suited for the representation of turbulence and its modeling, the establishment of a trusted ensemble of
data for the creation and validation of new models, and the deployment of these models in complex aerospace problems. Login
We are grateful to the following agencies for funding:

Password

Not a member? Sign up
- NASA : RCA (2011-2014) & LEARN (2014-2017) Forgot password? Click here
- NSF : CDESE (2015-2018) Links
- DARPA : EQUIPS (2015-2018)

+ NASA Langley's Turbulence
- ONR : Wall Turbulence BRC (2017-2021)

Modeling Resource page

We have several collaborators at the University of Michigan, Stanford University, and lowa State University. We also consult with + Johns Hopkins Turbulence
Boeing Commerical Airplanes and interact with NASA Langley Research Center. Database

 Universidad Politecnica de
We will highlight our research on this website, will maintain a wiki and we hope to make this a portal which users can Madrid Database

upload/download/process data and turbulence models. You can register using the bar on the right.
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Prediction with Machine-Learning Injection (Re, =
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Summary

Data
Inference in context ﬁ Inverse modeling
Information
Reconstruction ﬁ Machine Learning
I\/Iodeling Functional form is
targeted and not just
Knowledge closure parameters
Blending L Implementation
Predictive

capability




Disclaimer on RANS models

* Single point closures based on local ‘'well-behaved’ quantities
=>» Miss out on spectral and structural information
=» Do not process disparity of turbulence scales
=» Cannot distinguish inactive motions and low frequency
unsteadiness

* But, room for improvement is vast



