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Resolution	requirements	for	aircraft	wing		(Rec =	2x107)

DNS

LES

Hybrid	RANS-LES	/	WMLES

RANS

Out	of	reach	>	1012	 mesh	points	

Feasible	in	2000	~	108	 mesh	points	

Feasible	in	2025	~	1011	 mesh		points	

High	Lift	Wokshop



Resolution	requirements	for	aircraft	wing		(Rec =	2x107)

DNS

LES

Hybrid	RANS-LES	/	WMLES

RANS

Out	of	reach	>	1012	 mesh	points	

Feasible	in	2000	~	108	 mesh	points	

Feasible	in	2025	~	1011	 mesh		points	

Near-wall	modeling	is	here	to	stay	for	the	next	20	years	for	analysis

Many	other	use	cases:	Full	flight	envelope,	Parameter	sweeps,	Design,	
Trajectory	prediction,	mission	planning.	RANS	will	never	go	away.



Data	deluge…
• DNS	and	LES	have	been	
produced	in	quantity	
• Experimental	PIV	and	MRV	
high-res	data	sets	

• Data	sets	have	not had	a	substantial	impact	
on	closure	modeling



Commercial	example	:	Face	recognition

Data

Predictive	
capability

Mathematical	model	
+Machine	Learning

• No	physical	law	;
• Data	is	directly	

useful	for	model;
• Large	amounts	of	

relevant	data.



Can	we	replicate	this	type	of	success	in	turbulence	modeling?
Data

Predictive	
capability

Physical	model	+	Physics	
constraints	+	Machine	

Learning



Challenges

Predictive	
capability

• Data	contains	real	quantities;	Model	
contains	“modeled”	quantities	(loss	of	
consistency	is	severe	in	turbulence	
models)
è k	and	in	the	model	are	not	the	k	

and	eps	in	DNS

• Data	will	be	only	loosely	connected	to	
model	(and	not	objective)
è How	to	improve	a	turbulence	

model	if	we	only	have	pressure	
measurements	(or	images)?

• Data	will	be	noisy	and	of	variable	
quality,

• Inherent	uncertainty

Data

Physical	model	+	Physics	
constraints	+	Machine	

Learning



Outline

• Introduction
• Proof-of-concept
• How	do	we	setup	the	data-driven	turbulence	modeling	problem?
• What	are	the	components?
• Demonstration	

è Predictions	in	Airfoil	flows
• Dissemination	/	impact	
• Vision	/	Perspectives



Turbulence	models		

• One	- seven	transport	eqns,	and	up	to		30	adjustable	constants.
• Modeling	rests	on	large	amounts	of	intuition	and	luck,	in	spite	of	

starting	with	a	“rigorous”	approach	
• Theories	abound	for	parts	of	model,	but	not	for	output
• Model	constants	calibrated	on	very	limited	data
• Greater	sophistication	in	RANS	models,	with	mixed	degree	of	success

è More	constants	to	fit	,	still	use	canonical	problems



Turbulence	modeling	
discrepancies

• Balance	between	the	terms	matters	most	(and	not	accuracy	of	
individual	terms)

è Still	respect	invariance,	symmetries,	etc.
• Many	“seemingly	physical”	quantities	are	just	operational	variables

è Use	of	apriori analysis	is	of	limited	utility
• There	is	no	beautiful	turbulence	model	waiting	to	be	discovered	

è Look	for	optimal	model,	conditional	on	data	&	constraints?



Embedded	invariance

Ling	et	al	(2016)																																				:	Algebraic	RSM	functions

Ling	et	al.,	JFM	2016.

ML	algorithm	embeds	rotational	
invariance	by	enforcing	that	the	
predicted	anisotropy	tensor	lies	on	a	
basis	of	isotropic	tensors.



• Is	there	merit in	the	general	idea?
• How	to	setup	a	properly-posed data-driven-turbulence-modeling	

problem	?
• What	are	the	most	effective ways	to	use	Machine	Learning	

approaches?	
• What data (and	how	much	data)	is	needed	to	improve	the	

predictive	capabilities?	
• What	are	the	new modeling techniques and	algorithms	that	must	

be	developed	to	make	these	approaches	a	reality?
• What	improvements can	be	shown	in	a	number	of	flows	of	

interest?
• Once	a	model	has	been	learned,	how	is	it	best	embedded in	an	

existing	RANS	solver?	

Questions	at	the	beginning	of	the	program
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Many Questions

Basic	questions:	Can	machine	learning	work	at	all?:

Can	a	learning	algorithm	discover	and	replicate	a	known	
model?

Will	the	learned	model	destabilize	a	PDE	solver?

Isolate	errors	in	learning	from	complexities	of	real-world	
data

Not just a matter of learning and prediction… Have to 
address convergence within framework

15Proof-of-concept
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Input features

Locally Non-Dimensional 
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Procedure
1) Select	representative	datasets

• Flat	plates,	pressure-driven	
channels,	airfoils

2) Choose	and	extract	input	and	output	
features

• Spalart-Allmaras quantities

3) Select	learning	algorithm

• Neural	network

4) Train	learning	algorithm

• BFGS	optimizer

5) Embed	learned	model	within	flow	
solver

• SU2	

18

Feature
s Outputs

Solver

Procedure



Favorable pressure gradient channel flow

Injection within a converging solver yields poor 
results

Misleading Results

Prediction vs. Truth for MulProduction
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19We	can	learn	and	we	can	test,	but	…



Loss Functions
Squared-Error

Penalizes differences in the output value

Dimensionalized Squared-Error

Penalizes differences in the dimensional output value
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Loss Function Comparison
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G: No major 
difference

F: Small 
region of 
difference

P: Large 
discrepancy

Extended Results Suite
Mul. Mul.

Dest. Fw Dest. Prod. Prod. Source

Flatplate 3e6 G G G G G G

Flatplate 4e6 G G G G G G

Flatplate 5e6 G G G G G G

Flatplate 6e6 G G G G G G

Flatplate 7e6 G G G G G G

Channel Cp = �0.3 G G G G G F

Channel Cp = �0.1 G G G G G F

Channel Cp = �0.03 G G G G G F

Channel Cp = �0.01 G G G G G F

Channel Cp = 0.01 G G G G G F

Channel Cp = 0.03 G G G G G F

Channel Cp = 0.1 G G G G G F

Channel Cp = 0.3 P G G G P F

NACA 0 G G G G G G

NACA 1 G G G G G G

NACA 2 G G G G G G

NACA 3 G G G G G G

NACA 4 G G G G G G

NACA 5 G G G G G G

NACA 6 G G G G G G

NACA 7 G G G G G G

NACA 8 G G G F G G

NACA 9 G G G F G G

NACA 10 G G G F G G

NACA 11 G G G F G G

NACA 12 G G G F G G
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450+ cases

Test	cases



Onera M6 Wing

True ML

23Test	on	3D	problem



Feature Scaling is important

Testing within the CFD solver

Alignment of loss function

If there is an underlying model, it is possible to 
discover it

Findings 24Takeaways

Tracey, Brendan & Duraisamy, Karthik, & Alonso, Juan J. A Machine Learning 
Strategy to Assist Turbulence Model Development, Proc. AIAA SciTech, 
Kissimmee, FL 2015



Outline

• Introduction
• Proof-of-concept
• How	do	we	setup	the	data-driven	turbulence	modeling	problem?
• What	are	the	components?
• Demonstration	

è Predictions	in	Airfoil	flows
• Dissemination	/	impact	
• Vision	/	Perspectives



Field	
Inversion

Information Spatial	discrepancy		

Datasets				Y1,Y2…Yn
Field	Inversion	&	Machine	learning	(FIML)

DQ

Dt
= R(Q)+

�

j(x) : min
�

j(x)
||Y j � Y j(Q)||



�̂(f(Q))

Field	
Inversion

Information Spatial	discrepancy		

Knowledge Functional	discrepancy		

Datasets				Y1,Y2…Yn

Machine
Learning

�

1(x), �2(x), ...�n(x)

Field	Inversion	&	Machine	learning	(FIML)

DQ

Dt
= R(Q)+

�

j(x) : min
�

j(x)
||Y j � Y j(Q)||

f(Q)



�̂(f(Q))

Field	
Inversion

Information Spatial	discrepancy		

Embedding

Knowledge Functional	discrepancy		

Datasets				Y1,Y2…Yn

Machine
Learning

Prediction :		Injection	into	solver

�

1(x), �2(x), ...�n(x)

Field	Inversion	&	Machine	learning	(FIML)

DQ

Dt
= R(Q)+ �̂(f(Q))

DQ

Dt
= R(Q)+

f(Q)

�

j(x) : min
�

j(x)
||Y j � Y j(Q)||

f(Q)



�̂(f(Q))

Information Spatial	discrepancy		

Knowledge Functional	discrepancy		

Machine
Learning

�

1(x), �2(x), ...�n(x)

Major	insight	from	NASA	LEARN	project
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How	does	it	address	the	challenges?

Data

Predictive	
capability

Physical	model	+	Inference

Machine	learning

Physical	model	+	consistent	
augmentation

• Data	contains	real	quantities;	Model	
contains	“modeled”	quantities	(loss	of	
consistency		is	bad	in	turbulence	
models)
è Inference	connects	real	quantities	

to	modeled	ones

• Data	will	be	only	loosely	connected	to	
model	(and	not	objective)
è Inference	connects	secondary,	

non-objective	data	to	model	quantites

• Data	will	be	noisy	and	of	variable	
quality,	inherent	uncertainty
è Probabilistic	casting	of	inference	

and	learning
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1)	Inference

3)	Machine	
Learning

4)	Prediction
2)	Design	of	
Experiments
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Introducing	discrepancies
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Bayesian	FUNCTIONAL Inversion

d	– Data
β	- Unknown	function
h(β)	– Model	output
Cm - Observational	covariance
Cβ - Prior	covariance		

Parish,	Eric	&	Duraisamy,	Karthik, A	paradigm	for	data-driven	predictive	modeling	using	field	
inversion	and	machine	learning, Journal	of	Computational	Physics,	Volume	305,	15	January	
2016,	Pages	758–774 2016



Posterior

More	complete	PDFs	with	accelerated	MCMC	(with	P.	Constantine,	Colorado	Sc.	Of	Mines)



Example	1:	Flow	over	a	bump	– Field	inversion



Inferred	quantity	- Cf

LES
Prior
Posterior



Secondary	quantities

LES
Prior
Posterior

Data-driven	augmentation	of	turbulence	
models	for	adverse	pressure	gradient	flows AP	
Singh,	R	Matai,	K	Duraisamy,	P	Durbin,	Proc.	
AIAA	Aviation	2017



Example	2:	Curved	channel

Singh,	A.P.	&	Duraisamy,	K. Using	Field	Inversion	to	Quantify	Functional	Errors	in	Turbulence	
Closures, Phys.	Fluids	2016



Example	3:	Airfoil
Inversion	based	on	Pressures	
vs	
Inversion	based	on	LIFT!

Ability	to	work	on	sparse	amount	of	data	is	
critical
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How	to	transform	information	to	knowledge?

Machine	
Learning �(⌘1, ⌘2, ...)

⌘1, ⌘2, ...

�

1(x, y)

�
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3(x, y)

�

4(x, y)

.....

.....

�
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Selection	of	Features
Step	1:	Look	inside	the	baseline	model

Step	2:	Look	for	relevant	physics

Step	3:	Feature-subset	selection*

Kohavi,	R.	et	al.	“Wrappers	
for	Feature	Subset	
Selection,”	Artificial	
Intelligence,	1997	

Hill-climbing	algorithm

Features	locally	non-dimensional

S/⌦,⇧, sp/sd



Evaluation

*Sparse	Multiscale	Gaussian	Process	Regression	Using	Hierarchical	Clustering,	Z.	
Zhang,	K.	Duraisamy,	N.	Gumerov,	Applied	Numerical	Mathematics	2017

Neural	Networks
GP	regression
Multiscale	GP	regression*
Symbolic	regression



• Highly	multidimensional
• Since	learning	is	in	feature	space,	very	highly	multi-scale	(coarse	&	rich)
• Multiscale learning	is	an	active	research	area
• The	training	stage	requires	solution	of	a	large	ill-posed	linear	system	of	

algebraic	equations
• Regularization	and	speedups	of	solution	can	be	achieved	via	employment	of	

methods	for	efficient	complexity	reduction,	including
– Construction	of	compact	bases	via	data	structures
– Nystrom	methods	(low-rank	approximations)
– Preconditioned	iterative	procedures
– Specially	designed	Krylov subspace	methods

• The	test	stage	requires	fast	procedures	for	large	matrix-vector	products
• Computation	of	predictive	variance	can	be	also	done	efficiently	using	low-

rank	decompositions

Machine	Learning	Requirements



Pivotal	platform



Scalability	of	Parallelized	NN	Implementation
Linearly scalable as data set scales up

� Boosting implementation proved to be linearly scalable up to at 
least 500 million rows of data

� Tests done on duplicated LES dataset
– Model fits stayed relatively the same (no improvement due to 

no new data)

� Platform: GPDB 4.2.7 on ¾ rack DCA (192 CPU cores, 768 
GB memory)

Lin-log	plot



Multiscale GP	:	Model

n	=	500	uniform	random	distribution	in	[0,1]	x	[0,1]
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Prediction	in	Airfoil	
flows

Training	set	è

Singh,	A.,	Medida,	S.	&	Duraisamy,	K.,	Data-
augmented	Predictive	Modeling	of	Turbulent	
Separated	Flows	over	Airfoils,	AIAA	Journal,	
2017.



Inversion	based	on	Pressures	
vs	
Inversion	based	on	LIFT!

Ability	to	work	on	sparse	amount	of	data	is	
critical



True	prediction	!

Singh,	A.,	Medida,	S.	&	
Duraisamy,	K.,	Data-
augmented	Predictive	
Modeling	of	Turbulent	
Separated	Flows	over	Airfoils	
Submitted,	AIAA	Journal,	
2016	(arXiv)



Prediction	– S814

Collaboration	with	Altair,	Inc.



Prediction	– S805

Collaboration	with	Altair,	Inc.



Prediction	– S809

Collaboration	with	Altair,	Inc.



True	prediction	!

Inference	used	only	CL	data,	NN-augmented	model	provides	
considerable	predictive	improvements	of	Cp

S	809,	Re=2	Million



Variability
α=0

α=14 α=20

Training	from	different	
sets	

S	809,	Re=2	Million



Portability	:	
Implementation	in	AcuSolve

S809	Airfoil	:	Predictive	results	in	Commercial	CFD	solver



Robustness:	
Implementation	in	AcuSolve

S809	Airfoil	:	Predictive	results	in	Commercial	CFD	solver
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Dissemination	:	
UM/NASA	Symposium

Attendees:	88

NASA	+	Other	National	labs	:	12	+	8			=		20
U	of	M	+	Other	academia	:	22	+	31					=		53
Industry																																																			=		15



- AFRL	starting	a	6.3	project	in	data-driven	turbulence	
modeling!

- In	talks	with	DLR	Braunschweig
- Project	website

- Participation	in	NASA/Stanford	Summer	Turbulence	
Research	Program		(2014/2016)

- Presentation	at	NASA	Langley	(2013/2014/2016)
- Visit	by	Gary	Coleman	to	Michigan	(Dec	2014)
- Discussion	with	Big	data	analytics	group	at	NASA	Langley
- Discussions	with	several	NASA	researchers	(Ames,	
Langley)

Dissemination



• Singh,	A.P.	&	Medida,	S.	&	Duraisamy,	K. Machine	Learning-augmented	
Predictive	Modeling	of	Turbulent	Separated	Flows	over	Airfoils, AIAA	
Journal,	Vol.	55,	No.	7	(2017),	pp.	2215-2227. 2017

• Duraisamy,	K.	&	Singh,	A.P.	&	Pan,	S. Augmentation	of	Turbulence	Models	
Using	Field	Inversion	and	Machine	Learning, Proc.	AIAA	SciTech,	Grapevine,	
TX 2017

• Singh,	A.P.	&	Duraisamy,	K. Using	Field	Inversion	to	Quantify	Functional	
Errors	in	Turbulence	Closures, Phys.	Fluids	28,	045110 2016

• Parish,	Eric	&	Duraisamy,	Karthik, A	paradigm	for	data-driven	predictive	
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Growing	community	for	data-driven	turbulence	modeling	
– thanks	to	NASA	LEARN	!

2013:	Tracey,	Duraisamy,	Alonso	(ML	for	non-parametric	UQ)
---------------- LEARN	BEGINS	Jan	2014	---------------------
2014:	Duraisamy	et.	al	(Inversion	+	ML	for	model	
improvement)
2015:	Ling	&	Templeton, Weatheritt &	Sandberg	(apriori ML)
2016:	Xiao	et	al.	(ML	for	model	improvement)
2017:	Fabbiane,	Mishra,	Iaccarino,	Edeling (physics,	data-
based)
Also,	Dwight,	Cinella,	Arunjatesan et	al.,	

Companies:	Altair,	Inc.	;	UTRC;	
Labs:		AFRL,	DLR



Field	Inversion	+	Machine	learning	to	
Augment	Physics-based,	Consistent	Models

Data

Predictive	
capability

Physical	model	+	Inference

Machine	learning

Physical	model	+	consistent	
augmentation

• Data	contains	real	quantities;	Model	
contains	“modeled”	quantities	(loss	of	
consistency		is	bad	in	turbulence	
models)
è Inference	connects	real	quantities	

to	modeled	ones

• Data	will	be	only	loosely	connected	to	
model	(and	not	objective)
è Inference	connects	secondary,	

non-objective	data	to	model	quantites

• Data	will	be	noisy	and	of	variable	
quality,	inherent	uncertainty
è Probabilistic	casting	of	inference	

and	learning



Perspectives	1/2

• Framework:	Data	->	Information	->	Knowledge	->	Prediction
• Machine	learning	

è Can	function	as	indicator
è Is	an	optional	step
è Can	be	fed	by	theory	and	asymptotics

• If	there	is	an	underlying	“exact”	model,	we	can	discover	it
• There	is	no	(and	will	ever	be	a)	universally	accurate	model	waiting	

to	be	discovered
è Optimal	model,	conditional	on	data	and	assumptions	possible
è Avoid	tendency	to	overfit
è Small	number	of	sensible	features	(Galilean	invariant)
è Absolutely	the	most	sensible	thing	to	do	in	an	industrial	setting	

(Lots	of	data	for	a	class	of	problems,	Lots	of	expertise/knowhow)



Perspectives	2/2

• Modeling	has	ALWAYS	been	data-driven	&	we	have	always	been	using
machine	learning	(and	inversion	too)

• Data-driven	approach	is	not	a	substitute	to	turbulence	modeling

• Data-driven	approach	is	not	a	new	way	of	modeling.	It	is	a	new	tool.

• “Kitty	Hawk”	Stage.	Community	effort	required

• Uses	(other	than	prediction):
èModel	credibility:	Can	validate/invalidate	model	structures
è Uncertainty	quantification:	Can	obtain	modeling	error	bounds
è Robust	design
è Feature	selection
è Input	for	modeler	(forget	machine	learning)



Vision
A	continuously	augmented	curated	database	/	website	of	inferred	
corrections	that	are	input	to	the	machine	learning	process

Users	upload/download/process	data,	generate	maps.
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Prediction	with	Machine-Learning	Injection	(Reτ =	
950)

⌘ = {Sk/✏, P/✏, y
p
k/⌫}
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Summary

Data

Information

Modeling	
Knowledge

Predictive	
capability

Inverse	modeling

Machine	Learning

Implementation

Reconstruction

Inference	in	context

Blending

Functional	form	is	
targeted	and	not	just	
closure	parameters



Disclaimer	on	RANS	models

• Single	point	closures	based	on	local	`well-behaved’	quantities
èMiss	out	on	spectral	and	structural	information
è Do	not	process	disparity	of	turbulence	scales
è Cannot	distinguish	inactive	motions	and	low	frequency	

unsteadiness

• But,	room	for	improvement	is	vast


