Attachment, Hinge/Slider, Symmetry, and Sub-Surfaces

Rob McDonald
Attach Point

Every component is attached to (or placed in) the model by locating its attach point and positioning the component relative to that point.

Attach Point, only shown when selected. (new in v3.9.0)

Axis Orientation
RGB - XYZ
Attach to Parent (Comp)

Attachment translates/rotates the attach coordinate system

(None means attach to global coordinate system)

Attachment indicated by ‘^’ in browser

‘Comp’ attaches to parent’s origin
Attach to Parent (UW)

U,W coordinates run [0,1] along surface

‘UW’ attaches to parent’s surface
Attached components *always* move when their parent moves.

‘Rel’ sets the position/rotation relative to the attach point.

‘Abs’ sets the position/rotation in global coordinates.

When ‘Rel’ is selected, changing attachment moves component.

When ‘Abs’ is selected, component stationary as attachment changes (sometimes confusing).

Changing between ‘Abs’ and ‘Rel’ can be very powerful.
‘Blank’ components are a way to insert a new coordinate system.

Useful for positioning, mass properties, and grouping.
‘Hinge’ components are a way to add simple motion to a model.

Children of ‘Hinge’ components are forced attached.

Attach Point only shown when selected.

Hinge Fixed Side shown as feature line or when selected

Hinge Motion Side shown as feature line or when selected

Forced attachment indicated by ‘^^’ in browser
Hinge Motion Control

Activate/Deactivate motion and limits

Set limits to current position

Set slider range to limits
Hinge Orientation

Orient using XForm

Orient using a vector specified in this GUI

Six ways to specify vector

3D Vector
To 3D Point
To Point on Surface
Along Surface U-Direction
Along Surface W-Direction
Normal to Surface

Reference vector sets orientation
Symmetry

Components can be symmetric about any plane (XY, XZ, YZ) or axis (X, Y, Z) of any ancestor attach point or object.

Global origin is 0

Ancestors numbered by generation

Vehicle
> Fuselage
> HTail
> VTail
^ GearPod
^ Wing
-----^ Pylon
-----^ Nacelle
-------------^ PowerFace
SubSurfaces

Subsurfaces are rectangles, ellipses, or lines defined in (U, W) coords on a surface.

They can represent are honored by CompGeom, CFDMesh, and DegenGeom.

They can be used to model inlet/outlet BC’s, control surfaces, material properties, etc.
Questions?

Practice