EVTOL Crashworthiness

Moving Forward

Presented to: eVTOL Crashworthiness Workshop #2
By: Bob Stegeman- FAA Small Airplane Standards Staff
Date: October 9, 2020
EVTOL Certification

- Safety continuum-
 - primarily tied to occupancy
 - Operations over large populations;
 - beginning to look at protecting people on the ground
 - In some cases, UAS have higher expectations
 - Operations over transportation centers
 - Fit into safety continuum based upon initial model

- When operation/utilization model changes....level of safety can change
- Safety is tied to the initial assumptions and crashworthiness should be buried deep in the design and adequate to accommodate change
EVTOL Certification-First Steps

- Define the aircraft configuration
- Define the aircraft utilization
- Is it more 23 or 27?
- EVTOL aircraft don’t typically fit into the normal certification holes and require coordination for cert basis
- The wide design variations also result in big variations in performance(diverging from 23/27)
Current Path
-Proceed With the Known

- Part 23/27 static and dynamic crashworthiness loads derived from how vehicle flies/lands in emergency
- Currently applying some sort of 23/27 crashworthiness
- Part 27 fuel tank requirements are possibility
- Encourage incorporating crashworthiness best practices
 - Survivable volume
 - Occupant restraint/interior protection
 - Airframe load attenuation
 - Anti-plowing
 - Post crash fire protection
 - Good egress
EVTOL Certification - Current Example Static Loads

- Conventional wisdom and current state of the art for a s/vtol plane with wingborne cruise

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Occupant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>9.0g</td>
<td>9.0g</td>
<td>9.0g</td>
<td>16g</td>
<td>16g</td>
<td>16g</td>
<td>16g</td>
<td></td>
</tr>
<tr>
<td>Rearward</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.5g</td>
<td>1.5g</td>
<td>1.5g</td>
<td>1.5g</td>
<td></td>
</tr>
<tr>
<td>Upward</td>
<td>3.0g</td>
<td>3.0g</td>
<td>3.0g</td>
<td>4g</td>
<td>4g</td>
<td>4g</td>
<td>4g</td>
<td></td>
</tr>
<tr>
<td>Downward</td>
<td>6.0g</td>
<td>6.0g</td>
<td>6.0g</td>
<td>20g after intended displacement of seat device</td>
<td>20g after intended displacement of seat device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sideward</td>
<td>1.5g</td>
<td>1.5g</td>
<td>1.5g</td>
<td>8g</td>
<td>8g</td>
<td>8g</td>
<td>8g</td>
<td></td>
</tr>
<tr>
<td>Occupant weight</td>
<td>190 pounds</td>
<td>190 pounds</td>
<td>170 pounds*</td>
<td>170 pounds*</td>
<td>170 pounds*</td>
<td>170 pounds*</td>
<td>170 pounds*</td>
<td></td>
</tr>
<tr>
<td>Static items of Mass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>18.0g</td>
<td>18.0g</td>
<td>18.0g</td>
<td>12g</td>
<td>18.0g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rearward</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.5g</td>
<td>1.5g</td>
<td>1.5g</td>
<td>1.5g</td>
<td></td>
</tr>
<tr>
<td>Upward</td>
<td>3.0g</td>
<td>3.0g</td>
<td>3.0g</td>
<td>1.5g</td>
<td>1.5g</td>
<td>1.5g</td>
<td>1.5g</td>
<td></td>
</tr>
<tr>
<td>Downward</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12g</td>
<td>12g</td>
<td>12g</td>
<td>12g</td>
<td></td>
</tr>
<tr>
<td>Sideward</td>
<td>4.5g</td>
<td>4.5g</td>
<td>4.5g</td>
<td>6g</td>
<td>6g</td>
<td>6g</td>
<td>6g</td>
<td></td>
</tr>
<tr>
<td>Retractable Gear</td>
<td>3g</td>
<td>3g</td>
<td>3g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ultimate inertia force</td>
<td>3g</td>
<td>3g</td>
<td>3g</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

170 pounds is used as 190 pounds is traditionally used to accommodate parachute on utility and acrobat aircraft.
EVTOL Certification - Current Example Dynamic Loads

- Conventional wisdom and current state of the art for a s/vtol plane with wingborne cruise

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1st test (combined fwd/down) 1st row</td>
<td>19g, Δ velocity = 31 ft/sec, 0.05 sec rise time</td>
<td>19g, Δ velocity = 31 ft/sec, 0.05 sec rise time</td>
<td>30g, Δ velocity = 30 ft/sec, 0.031 sec rise time</td>
<td>30g, Δ velocity = 30 ft/sec, 0.031 sec rise time</td>
</tr>
<tr>
<td>1st test (combined fwd/down) Other rows</td>
<td>15g, Δ velocity = 31 ft/sec, 0.06 sec rise time</td>
<td>15g, Δ velocity = 31 ft/sec, 0.06 sec rise time</td>
<td>30g, Δ velocity = 30 ft/sec, 0.031 sec rise time</td>
<td>30g, Δ velocity = 30 ft/sec, 0.031 sec rise time</td>
</tr>
<tr>
<td>2nd test (FWD) with floor warpage 1st row</td>
<td>26g, Δ velocity = 42 ft/sec, 0.05 sec rise time</td>
<td>26g, Δ velocity = 42 ft/sec, 0.05 sec rise time</td>
<td>18.4g, Δ velocity = 42 ft/sec, 0.071 sec rise time</td>
<td>26g, Δ velocity = 42 ft/sec, 0.05 sec rise time</td>
</tr>
<tr>
<td>2nd test (FWD) with floor warpage Other rows</td>
<td>21g, Δ velocity = 42 ft/sec, 0.06 sec rise time</td>
<td>21g, Δ velocity = 42 ft/sec, 0.06 sec rise time</td>
<td>18.4g, Δ velocity = 42 ft/sec, 0.071 sec rise time</td>
<td>21g, Δ velocity = 42 ft/sec, 0.06 sec rise time</td>
</tr>
<tr>
<td>ATD weight</td>
<td>170 pounds</td>
<td>170 pounds</td>
<td>170 pounds</td>
<td>170 pounds</td>
</tr>
</tbody>
</table>

170 pounds is used as 190 pounds is traditionally used to accommodate parachute on utility and acrobat aircraft.
Disclaimer:

• To this point as described, is where we are right now with current applicants and adapted requirements

• From this point on, this presentation mixes the known and suggests a plan forward into a better predicted solution for future EVTOL crashworthiness

• This is not FAA policy and is not data that is directly suitable for certification
What is an Emergency Landing?

- We bound an emergency landing as an impact where the aircraft is under control at impact or at least under control until just before impact.
- In this external impact condition, we can then evaluate protection/crashworthiness and have a line in the sand for suitable protection within human tolerance.
- Beyond this emergency condition, all bets are generally off on survivability.
EVTOL Emergency Landing

- Parts 23 and 27 emergency landings are based upon years of service data derived from relatively unchanged configurations/modes of flight.
- EVTOLs offer more variables and don’t have this crash history defining survivability vectors to pick a “survivable point” on a curve.
- EVTOLs need “another way down” to controlled emergency landing.

Note that multiple charts like this have been historically compiled to define survivable impacts, this is not “The” chart to use.
Know Your Emergency Landing

- We need to control our emergency landing
- EVTOL likely won’t look like 23/27 emergency landing
These EVTOL aircraft are not airplanes nor are they helicopters…..

- Part 23 aircraft assume some wing lift to emergency landing.
- Part 27 autorotate to emergency landing
- EVTOLs we are seeing are typically optimized for transition flight, if having wingborne lift, higher stall-speed wings limited flight controls
- Have little reason to believe right now that EVTOLs will have emergency landings with velocities and orientations that approximate 23/27
- EVTOLs need to consider “another way down” to controlled emergency landing within bounds of system failures
Another Way Down

• EVTOL aircraft crashworthiness process needs to consider aircraft system safety like never before

• Emergency landing parameters of external vehicle impact direction/magnitude limited to where vehicle crashworthiness can have a chance

• What system redundancy or features are available to control EVTOL emergency landing; if failed, what else can be utilized to maintain control
 – Not saying not possible, just that EVTOLs need to assess and utilize scenarios for redundancy/abilities to emergency landing for likely failures
 – Unique by aircraft
 – Specific concern for transition flight, low airspeed/altitude (coffin corners of envelope), operation over congested areas
 – Response time, recovery time

• Incumbent upon applicant to demonstrate overall aircraft ability to deliver aircraft to crashworthy emergency landing conditions
Controlling Descent

How can we control descent?
• Residual thrust for multiple rotors
• Residual thrust coupled with residual lift
• Control redundancy via thrust and/or flight controls
• FHA should drive design for solutions to achieve emergency landing
 ---use care in just relying on the small probabilities
• How does automation affect emergency landing?
• Ballistic parachute systems have limitations
 – Traditionally a supplemental safety system
 – Trading controllable situation with uncontrolled situation; maybe with better outcome
 – Established performance is an impact with fuel burn and reduced weight
 – Limited envelope, not likely to be useful at low AGL
 – Would become MEL/no dispatch item
EVTOL Certification -

Crashworthiness in the Future

• Define vehicle operation/flight/failures/emergency landing
• Define emergency landing, based upon how it flies considering loss of power, thrust, system failure
 – VTOL-has transient phase to horizontal or is purely vertical thrust-will drop like helo with little or no forward airspeed
 – Fixed wing/wingborne lift flight(can land horizontally)-will glide in like airplane with appropriate airspeed
 – Performance tied to unique design of aircraft
 – At this point we can discuss appropriate crashworthiness
Emergency Landing Vector

- If EVTOL emergency landing can be brought to within parameters of 23/27 then existing emergency landing may be able to leverage existing part 23/27 crashworthiness in an appropriate manner.
- If EVTOL emergency landing deviates from the known, then applicant would need to demonstrate equivalent occupant survivability.
- Emergency landing vectors are not identical and do not easily correlate to the XX.562/561 floor crashworthiness loads due to airframe attenuation.
EVTOL Certification-Best Practices

• Advantageous to build crashworthiness features early into airframe design and system architecture/operations
 – Crushable, energy absorbing airframe
 – More-rigid passenger cabin structure
 – Solid restraint/seat attachments to airframe, but can gimbal and stay attached in crash
 – Consider headstrike/flail envelope in cabin avoid rigid, sharp features
 – Restrain items of Mass/batteries/powerplants/cargo
 – Ensure egress capability features after crash/deformation
 – Minimize post crash fire hazards
 – All of which are bounded by a defined emergency landing condition
 – *First responder rescue features (NFPA alternate fuel vehicles safety training)
Final Thoughts

• Traditionally, Certification moves ahead incrementally and the level of safety is based upon the best knowledge we have now
• Currently, 23/27 requirements are applied with systems failure hazard analysis undergone independently—we have a good idea of how 23/27 aircraft hit the ground
• Don’t bet on eliminating crashworthiness if your FHA numbers are really small..... There will be a baseline crashworthiness level.
• New avenues will be more of a challenge as vehicle type/operations certification is not stable
• Other paths......Longer/More Advanced/Likely Safer/But...More Expensive Paths
 – Automotive approach-path of full vehicle crash response/seat/restraint/ATD
 – Potentially extensive modelling that will likely require substantiation via large scale or component test
 – Crashworthiness will depend on robust systems safety
• Better, more data results in better understanding/crashworthiness performance
• But we can’t get there without bounding the emergency landing condition
Questions

Early experiments in transportation