HAT Tricks: Understanding Human Autonomy Teaming through Applications

Bimal Aponso

SAE/NASA Autonomy and Next Generation Flight Deck Symposium

April 18, 2017
What is a “Hat Trick”?

Achieving a positive feat three times in a game

Effective Human-Autonomy Teaming in three critical functions:

- MONITOR
- ASSESS
- DECIDE
Safe and Efficient Crew-Autonomy Teaming/Technologies (SECAT) Sub-project

Goal:

Develop and demonstrate the feasibility of using autonomous systems concepts, technologies, and procedures to improve aviation safety and efficiency during nominal and off-nominal operations.

Benefits:

• Provide autonomy-based technologies that collaborate with the human crew to monitor and mitigate risk in flight.

• Develop crew-autonomy teaming strategies and techniques that will enhance trust in autonomy in the cockpit.
Addressing Autonomous Systems Research Needs

• SECAT addresses the research themes identified by the **ARMD Strategic Thrust 6 Roadmap**, primarily:
 – Human-Autonomy Teaming in Complex Aviation Systems
 – Technologies and Methods for Design of Complex Autonomous Systems

• SECAT addresses the emerging White House AI policy
 – Identifying benefits and risks of Artificial Intelligence (AI)

• SECAT addresses USAF Autonomous Systems Research Needs
 – Goal: “the best benefits of autonomous software working synergistically with the innovation of empowered airmen”
Increasingly Autonomous Systems

Performance and safety of combined system is greater than either component alone.
Levels of Automation (SAE International)

<table>
<thead>
<tr>
<th>Levels</th>
<th>Human Driver Monitors Environment</th>
<th>System Monitors Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Automation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>The absence of any assistive features such as adaptive cruise control.</td>
<td>Conditional Automation</td>
</tr>
<tr>
<td>1</td>
<td>Driver Assistance</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Systems that help drivers maintain speed or stay in lane but leave the driver in control.</td>
<td>High Automation</td>
</tr>
<tr>
<td>2</td>
<td>Partial Automation</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>The combination of automatic speed and steering control—for example, cruise control and lane keeping.</td>
<td>Full Automation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Who steers, accelerates and decelerates
- **0**: Human driver
- **1**: Human driver and system
- **2**: System
- **3**: System
- **4**: System
- **5**: System

Who monitors the driving environment
- **0**: Human driver
- **1**: Human driver
- **2**: Human driver
- **3**: System
- **4**: System
- **5**: System

Who takes control when something goes wrong
- **0**: Human driver
- **1**: Human driver
- **2**: Human driver
- **3**: Human driver
- **4**: System
- **5**: System

How much driving, overall, is assisted or automated
- **0**: None
- **1**: Some driving modes
- **2**: Some driving modes
- **3**: Some driving modes
- **4**: Some driving modes
- **5**: All driving modes

Credit: Scientific American, June 2016
Current Flight Safety Challenges with Automation

 – Pilots frequently mitigate safety and operational risks – the aviation system is designed to rely on that mitigation
 – Insufficient depth of system knowledge or understanding of aircraft

• “Enhanced FAA Oversight Could Reduce Hazards Associated With Increased Use of Flight Deck Automation,” DOT OIG Report, 2016:
 – Relying too heavily on automation systems may hinder a pilot’s ability to manually fly the aircraft during unexpected events

 – Stakeholder/Public/Flight Crew perception - autonomy “trust” and “social issues”
Technical Approach

Increasingly Autonomous System

Monitor

Execute

Assess

Human Autonomy Teaming

Decide

Human/Machine Interface

Aircraft

Commands

Automation

Aircraft State

System Faults

Weather & Traffic

ATC Clearances

Human

Autonomy

Teaming

Assess

Monitor

Decide

Execute

Increasingly Autonomous System
SECAT Technical Objectives

Cockpit Hierarchical Activity Planning and Execution

SAE/NASA Autonomy and Next Generation Flight Deck Symposium