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Breakthrough improvements require 
unconventional aircraft configurations

Truss-braced wing Blended wing body

Double bubbleJoined wing



Low-fidelity and empirical design tools 
do not adequately model the tradeoffs

Additional wave and 
interference drag

↓
CFD analysis

High aspect-ratio
composite wings

↓
Aeroelastic tailoring

Continuous descent and 
low Mach number flight

↓
Mission analysis



[Kenway, Kennedy, and Martins, AIAA 2014-3274]

Adjoint-based design optimization algorithms 
can accelerate the design process



The challenge problem:  
How can we design a new configuration while 
considering the impact at the airline level?



We chose to focus on the truss-braced wing

Struts to brace 
the wing

High aspect-
ratio wings

Lighter wing Lower drag



The approach is to find the best design 
that maximizes profit for the airline
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To do this, we perform simultaneous 
allocation-mission-design optimization
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Subprojects for Phase 2

1. Parallel matrix-free optimizer 

2. Scalable modular framework for MDO 

3. Component-based aerodynamic shape optimization

4. Design, allocation and revenue optimization

5. Low-order model for transonic flutter prediction
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Subproject 1  
Parallel matrix-free optimizer
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Gradient-based optimization is the only hope 
for large numbers of design variables

Dimension
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Figure 3: Study 1: Dimension analysis for 2-D Rosenbrock function
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Figure 4: Study 1: Local minimum of 8-D Rosenbrock function

methods reflect in their better ability to find global minimum. As the increasing of problem size, gradient
methods tends toward the local minimum while non-gradient methods can still find the global minimum.
However, consider their performance at high dimension, we cannot take fully use of this advantage.
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adjoint vector
Large numbers of  
design variables
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… but the adjoint method cannot handle large 
numbers of variables and constraints simultaneously



Current state-of-the-art optimizers  
do not scale well with problem size…

…they solve the optimality conditions using Newton’s method

This requires the matrices W and A explicitly, which are 
costly to compute for large problems
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We developed an all new algorithm for numerical 
optimization that uses a matrix-free approach

Instead of requiring the matrices explicitly, our optimizer 
requires only matrix-vector products

This saves memory and computational time, enabling the 
solution of very large problems

[Hicken and Dener, SIAM J.Opt., 2015]
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RSNK: Reduced-space Newton—Krylov



Previous results with conventional optimizers show 
that this is a challenging problem

[Lyu, Kenway and Martins, 2015]

http://arc.aiaa.org/doi/full/10.2514/1.J053318


RSNK was shown to be more efficient than 
a state-of-the-art optimizer for large problems

[Dener, Hicken, Kenway, Lyu and Martins, AIAA 2015-1945]



Matrix-free optimization algorithms must address 
two challenges

In Phase 2, this subproject was focused on two 
challenges that face matrix-free optimization:


Challenge 1: handling nonconvexity 

Challenge 2: matrix-free preconditioning



We implemented a continuation strategy to ensure 
convergence to local minimizers

easy problem:

min
x

1

2
(x� x0)

2 min
x
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target problem:follow path by

solving sequence


of problems
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starting
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We developed a matrix-free preconditioner that 
uses approximate adjoints

1) eliminate variables:


2) use approximate adjoints for matrix-vector 
products:


3) apply Lanczos to form low-rank SVD-based 
preconditioner:

2

4
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We have demonstrated the algorithm on a difficult 
structural optimization problem

‣ minimize weight w.r.t. 
thickness distribution


‣ 2048 design variables

‣ 2048 stress constraints

‣ 4096 bound constraints



The algorithm successfully converges to the 
optimal thickness distribution

red indicates regions of increased thickness

F



The matrix-free algorithm outperforms a state-of-
the-art optimization method

SNOPT

Kona

(with precond.)Kona


(no precond.)



We observe excellent algorithmic scalability as the 
problem size increases

Comparison between Kona and SNOPT on a 
synthetic verification problem 



Summary for Subproject 1

Phase 2 achievements:

‣ Developed a novel scalable matrix-free 

optimization algorithm 

‣ Demonstrated algorithm on challenging 

large-scale structural optimization 
problem


Next steps:

‣ Apply developed pre-conditioner to 

aerodynamic and aerostructural 
optimization



Subproject 2  
Scalable modular framework for MDO
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Combining many types of models and  
computing their gradients is challenging
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We recently developed an equation that  
unifies the methods for computing derivatives

‣ Finite differences 

‣ Chain rule 

‣ Direct method/adjoint method 

‣ Algorithmic differentiation

By the inverse function theorem, if @R
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is invertible at u

⇤, there exists a
local inverse R

�1 defined on an open neighborhood of R(u⇤) in the
codomain. Moreover,
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[Hwang and Martins, AIAAJ, 2013]



Using this theory, we developed a parallel 
framework that computes coupled gradients

Each discipline computes its partial derivatives; 
the framework computes the total derivatives

38
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The framework uses efficient 
numerical linear algebra

The framework uses efficient 
numerical linear algebra

JOHN T. HWANG AND JOAQUIM R. R. A. MARTINS 27

Algorithm 5. apply linear [recurs.]

input : (dp, du)
output: dr
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

end

=

@R

@(p, u)
dp
du dr

Algorithm 6. solve linear [GS]

input : dr
output: du
rhs � dr

while not converged do
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input : dr
output: du
rhs dr

function linear operator(x)

dr  x

solve linear

apply linear

y  dr

return y

du krylov(rhs, linear operator)

=

@R

@u ⇠ @R

@u

�1
du dr

JOHN T. HWANG AND JOAQUIM R. R. A. MARTINS 27

Algorithm 5. apply linear [recurs.]

input : (dp, du)
output: dr
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

end

=

@R

@(p, u)
dp
du dr

Algorithm 6. solve linear [GS]

input : dr
output: du
rhs � dr

while not converged do
for each subsys do

scatter du to subsys.dp

subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end

= �

@R

@u
du dr

@R

@u
du

Algorithm 7. solve linear [Jacobi]

input : dr
output: du
rhs � dr

while not converged do
scatter du to each subsys.dp

for each subsys do
subsys.apply linear

subsys.dr  rhs� subsys.dr

subsys.solve linear

end
end

= �

@R

@u
du dr

@R

@u
du

Algorithm 8. solve linear [Krylov]

input : dr
output: du
rhs dr

function linear operator(x)

dr  x

solve linear

apply linear

y  dr

return y

du krylov(rhs, linear operator)

=

@R

@u ⇠ @R

@u

�1
du dr

Block Gauss-Seidel

Preconditioned 
Krylov subspace methods

40The built-in solvers are used extensively

in the mission analysis component

[Hwang and Martins, ACM TOMS 2017]



This algorithmic framework has been 
implemented in NASA’s OpenMDAO

Several other applications have been handled:


Satellite design and 
operation optimization Wind turbine optimization

[Gray, Hearn, Moore, Hwang, Martins, and Ning, AIAA 2014-2042]



Summary for Subproject 2

Phase 1 achievements:

‣ Developed a novel algorithmic framework 

for coupled analysis and gradient 
computation


‣ Implemented framework numerical 
methods in OpenMDAO


‣ Spin-off through OpenMDAO 

Phase 2 achievements:

‣ Benchmark framework in other problems

‣ Developed better parallel support

‣ Supported OpenMDAO team

The framework uses efficient 
numerical linear algebra
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Subproject 3 
Component-based aerodynamic shape optimization



To model the TBW, we use GeoMACH, 
which was developed in an earlier NASA effort

GeoMACH models aircraft geometries and structures

using a differentiable parametrization



We obtained similar results  
with the RANS equations



We also developed a structural model 
for the truss-braced wing using GeoMACH 



Summary for Subproject 3

Phase 1 achievements:

‣ Developed geometries for the wing & 

struts and for the full TBW configuration

‣ Performed aerodynamic shape 

optimization to eliminate the shock

‣ Began development of a structural model 

for the TBW 

Phase 2:

‣ Perform detailed shape optimization

‣ Develop new shape optimization 

approach to address identified issues



When we think about an airplane design, 
we think about components



However, we have been operating on the 
complete configuration, which has limitations



Overset meshes allow component-based 
mesh generation for CFD analysis



Overset meshes allow component-based 
mesh generation for CFD analysis



We need collar meshes to represent intersections



Overset maybe hampered if geometry manipulation 
is not compatible



Overset maybe hampered if geometry manipulation 
is not compatible



We implement a component-based geometry 
manipulator for aerodynamic shape optimization



Each primary component requires three inputs



Triangulated surfaces are used for automatic collar 
mesh generation



We use reverse algorithmic differentiation to 
compute derivatives



We tested the capability by doing a wing-fuselage 
shape optimization study



We are applying this approach to the TBW



We are applying this approach to the TBW



We are applying this approach to the TBW



Summary for Subproject 3

Phase 2 achievements:

• Developed the capability to optimize 

components and intersections

• Discovered aerodynamic shape 

optimization trends in wing-fuselage 
design


Next steps:

• Perform aerodynamic and 

aerostructural design optimization of 
TBW configuration 
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We demonstrated the ability to pose and solve 
design, allocation and revenue management as a 
monolithic optimization problem

Different subspaces and their interactions


Newly introduced “Economic” subspace to better 
calculate the fleet-level profit 54



To address the monolithic problem, we developed a 
new optimization framework - A Mixed Integer 
Efficient Global Optimization (AMIEGO)

Can handle fully coupled expensive design-allocation-revenue 
management subspaces, moderate-scale integer design space 
and large-scale continuous design space 

[Roy and Crossley, AIAA, 2016-1659]

[Roy, Moore, Hwang, Gray, Crossley, and, Martins, AIAA, 2017-1305] 55

Leverages	adjoint-based	method	to	
address	large-scale	continuous	
design	space



We tested the design, allocation and revenue 
management problem on a 11 route problem using FLOPS

56

Goal is to design a 162 seat, 2940nmi passenger aircraft, ‘yet-to-be-acquired’ by the 
airline (based on Boeing 737-800 aircraft)


This problem has 33 integer variables of the allocation problem and 61 continuous 
variables of the design and revenue management problems

Airline	fleet	composi=on

0

4

7

11

14

B757-200 A320-200 AC-X



Design-allocation-revenue management optimization yielded 
large profit increases with the simultaneous approach

57[Roy, S., Ph.D. Thesis, Purdue University, 2017]

Demonstrates the need to capture the synergism that exists among the interacting group 
of subspaces



We have ported AMIEGO to OpenMDAO

Available as an MINLP driver


Initial aggressive splitting feature (step 4 of 
AMIEGO) makes efficient use of parallel 
computing resources – helps get rid of vast 
majority of design space

58

1 2

3 45

x1

x2



Summary for Subproject 4

Phase 2 achievements:

• Developed the ability to pose and 

solve design and allocation as a 
monolithic optimization problem


• Introduced revenue management 
subspace


• Developed a new optimization 
framework (AMIEGO) to address 
expensive MINLP problems


Next steps:

• Replace FLOPS with the high fidelity 

analysis tools 
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Subproject 5:  
A low-order model for transonic flutter prediction



Research problem
‣ Commercial transport aircraft fly in transonic flow regime

‣ Need accurate transonic flutter models for conceptual 

aircraft design

‣ Models need to be cheap to allow for thousands of 

design iterations

Goals
‣ Develop physics-based low-order model for transonic 

flutter over airfoils

‣ Train coefficients of low-order model using high-fidelity 

Euler/RANS simulations



Our approach



Helmholtz decomposition



Typical section structural model



Fitting the aerodynamic model



Flutter boundary as a function of CG using LOM



Influence of lift coefficient on flutter boundary



Validation



Summary for Subproject 3

Phase 2 achievements:

• Developed accurate fast method to 

include transonic flutter constraints in 
conceptual aircraft design


• Demonstrated approach on 2D 
problem


Next steps:

• Extend approach to 3D

• Implement a flutter constraint 

computation for the TWB
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Summary of novel contributions
1. A new modular, scalable, and general numerical optimization 

algorithm that handles parallel problems

2. A parallel, scalable framework for MDO and gradient computation 

(now implemented in OpenMDAO)

3. A matrix-free CFD adjoint 

4. A component-based geometry manipulation for aerostructural 

optimization of full unconventional configurations

5. An adjoint-based mission analysis and trajectory optimization code

6. A method for simultaneously optimizing aircraft trajectory and 

allocation 

7. A framework for performing aircraft design optimization under 

uncertainty

8. A new technique for low-order modeling with application to flutter



Products

‣ 22 papers


‣ 2 PhD thesis


‣ 1 Masters thesis


‣ 1 researcher hired by NASA


‣ 1 researcher hired by AFRL


‣ 4 software package contributions:


• OpenMDAO


• Kona


• pyMission


• AMIEGO
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