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Breakthrough improvements require
unconventional aircraft configurations

Joined wing Double bubble



Low-fidelity and empirical design tools
do not adequately model the tradeoffs

Additional wave and High aspect-ratio Continuous descent and
interference drag composite wings low Mach number flight
! 1 !

CFD analysis Aeroelastic tailoring Mission analysis



Adjoint-based design optimization algorithms
can accelerate the design process

Span=58_8_m Span=75.94 m t,o (mm) 6 8101214161820222
Aspect ratio=9.04 Aspect ratio=12.48 y
Wing mass=30286 kg Wing mass=41501 kg

Fuel burn=112276kg Fuel burn=97495 kg
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[Kenway, Kennedy, and Martins, AIAA 2014-3274]



The challenge problem:
How can we design a new configuration while
considering the impact at the airline level?
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We chose to focus on the truss-braced wing
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The approach is to find the best design
that maximizes profit for the airline

Aircraft
design

'
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To do this, we perform simultaneous
allocation-mission-design optimization

Fuel burn,

Ontimizer Aircraft Mission Flights
P design profiles per day
Aerostructural L1ft drag,
analysis moment
thht Mission
conditions analysis

block time

Airline Allocation
profit analysis




Subprojects for Phase 2

1. Parallel matrix-free optimizer

2. Scalable modular framework for MDO

3. Component-based aerodynamic shape optimization
4. Design, allocation and revenue optimization

5. Low-order model for transonic flutter prediction

Flights
per day




Subproject 1
Parallel matrix-free optimizer
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Gradient-based optimization is the only hope
for large numbers of design variables
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... but the adjoint method cannot handle large
numbers of variables and constraints simultaneously

df _of of [0R] 'OR
dx Ox Oy|oy| Ox

Large numbers of
design variables

Large numbers of
design variables and
constraints




Current state-of-the-art optimizers
do not scale well with problem size...

...they solve the optimality conditions using Newton’s method

Wi Alllp Ok
Ak 0 a Ck

This requires the matrices W and A explicitly, which are
costly to compute for large problems



We developed an all new algorithm for numerical
optimization that uses a matrix-free approach

Instead of requiring the matrices explicitly, our optimizer
requires only matrix-vector products

Wi Alllp Jk
Ak 0 a Ck

This saves memory and computational time, enabling the
solution of very large problems

RSNK: Reduced-space Newton—Krylov

[Hicken and Dener, SIAM J.Opt., 2015]



Previous results with conventional optimizers show
that this is a challenging problem

Lyu, Kenway and Martins, 2015]



http://arc.aiaa.org/doi/full/10.2514/1.J053318

RSNK was shown to be more efficient than
a state-of-the-art optimizer for large problems
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[Dener, Hicken, Kenway, Lyu and Martins, AIAA 2015-1945]



Matrix-free optimization algorithms must address
two challenges

In Phase 2, this subproject was focused on two
challenges that face matrix-free optimization:

Challenge 1: handling nonconvexity

Challenge 2: matrix-free preconditioning



We implemented a continuation strategy to ensure
convergence to local minimizers

easy problem: follow path by target problem:
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We developed a matrix-free preconditioner that
uses approximate adjoints

1) eliminate variables:

W0 AT
0 —AS —S | =P W —ATSTIAA]
A S 0

2) use approximate adjoints for matrix-vector
products:

[W — ATS_l/\A] U=
3) apply Lanczos to form low-rank SVD-based
preconditioner:

W — ATSIAA]

~ VY tyt



We have demonstrated the algorithm on a difficult
structural optimization problem

 minimize weight w.r.t.

g nx thickness distribution
/
T - 2048 design variables
ny
L - 2048 stress constraints
/ - 4096 bound constraints
/ Vv F




The algorithm successfully converges to the
optimal thickness distribution

lF

red indicates regions of increased thickness



The matrix-free algorithm outperforms a state-of-
the-art optimization method
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We observe excellent algorithmic scalability as the
problem size increases
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Summary for Subproject 1

Phase 2 achievements:
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o= SNOPT > Developed a novel scalable matrix-free
optimization algorithm

> Demonstrated algorithm on challenging
large-scale structural optimization
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Next steps:

> Apply developed pre-conditioner to
aerodynamic and aerostructural
optimization



Subproject 2
Scalable modular framework for MDO
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Combining many types of models and
computing their gradients is challenging
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We recently developed an equation that
unifies the methods for computing derivatives
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[Hwang and Martins, AIAAJ, 2013]



Using this theory, we developed a parallel
framework that computes coupled gradients

Each component computes its local derivatives;
the framework computes coupled gradients automatically



The framework uses efficient
numerical linear algebra

Block Gauss-Seidel

Preconditioned _
Krylov subspace methods

The built-in solvers are used extensively
In the mission analysis component

[Hwang and Martins, ACM TOMS 2017]



This algorithmic framework has been
implemented in NASA’'s OpenMDAO

se=EmMIDIAIO

Several other applications have been handled:

Satellite design and
operation optimization

Wind turbine optimization

[Gray, Hearn, Moore, Hwang, Martins, and Ning, AIAA 2014-2042]



Summary for Subproject 2

Phase 1 achievements:

> Developed a novel algorithmic framework
- | | for coupled analysis and gradient
'~ - . " computation

> Implemented framework numerical
methods in OpenMDAO
> Spin-off through OpenMDAO
- Phase 2 achievements:

> Benchmark framework in other problems
> Developed better parallel support

open m D m @ > Supported OpenMDAO team



Subproject 3
Component-based aerodynamic shape optimization
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To model the TBW, we use GeoMACH,
which was developed in an earlier NASA effort

== // | Z°
v y

GeoMACH models aircraft geometries and structures
using a differentiable parametrization



We obtained similar results
with the RANS equations

Baseline Optimized
Co= 0.0458 & A Cp= 0.0363




We also developed a structural model

for the truss-braced wing using GeoMACH

LN

A TR
/o,,,a,% /mv/o/o'//
ARG

) N\

O
AW @
/”% o/o{,
N W%

Ny

NP\

7 .3\4\

()
B!
O
RO

O
VRN ,/

A\

RN

ZAL

N
Qi

.,./?/.




Summary for Subproject 3

\ Phase 1 achievements:

> Developed geometries for the wing &
struts and for the full TBW configuration

> Performed aerodynamic shape
optimization to eliminate the shock

> Began development of a structural model
for the TBW

Phase 2:
> Perform detailed shape optimization

> Develop new shape optimization
approach to address identified issues




When we think about an airplane design,
we think about components

Fuselage

Nacelle



However, we have been operating on the
complete configuration, which has limitations

Junction control points
had to remain fixed

Free-form deformation boxes (FFDs)



Overset meshes allow component-based
mesh aeneration for CFD analvsis

Each component can be meshed independently...




Overset meshes allow component-based
mesh generation for CFD analysis

nnnnnn

.. and then combined to build the full geometry.




We need collar meshes to represent intersections




Overset maybe hampered if geometry manipulation
Is not compatible

If we rotate the wing...




Overset maybe hampered if geometry manipulation

IS not compatible

. the fuselage also changes
S @ 2000099090990 _WOLOOOO NS “af l
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We implement a component-based geometry
manipulator for aerodynamic shape optimization

pySurf is developed with the following points in mind:

» Independent parametrization and manipulation of primary components
» Efficient computation of intersections between primary components
» Automatic collar mesh generation

» Differentiated code for gradient-based optimization



Each primary component requires three inputs

Triangulated surfaces  Structured surface meshes FFD blocks

Wing

Fuselage

Both representations are embedded in the same FFD to ensure consistent displacements



Triangulated surfaces are used for automatic collar
mesh generation

FFD updates [(«~— design variables

triangulated surfaces

Y

Intersection
computation

Intersection curve
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primary surface meshes

collar surface mesh
Y

|
|
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yperbolic Volume mesh W f Flow Solver
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We use reverse algorithmic differentiation to
compute derivatives

—»[ FFD updates }— or
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Wes Hybrid adjoint method (Mader et al., 2008)
of
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We tested the capability by doing a wing-fuselage
shape optimization study

Reversed flow

Reversed flow Baseline (B) Fairing optimization (F)

Fairing + twist optimization (F+T) Fairing + twist + wing shape optimization (F+T+S)



We are applying this approach to the TBW




We are applying this approach to the TBW




We are applying this approach to the TBW




Summary for Subproject 3

Reversed flow

Phase 2 achievements:

* Developed the capability to optimize
components and intersections

* Discovered aerodynamic shape
optimization trends in wing-fuselage

design

Reversed flow Baseline (B)

Next steps:

* Perform aerodynamic and
aerostructural design optimization of
TBW configuration

Fairing + twist optimization (F+T) 52




Subproject 4
Design, allocation and revenue management
modeling and optimization
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We demonstrated the ability to pose and solve
design, allocation and revenue management as a
monolithic optimization problem

Engineering Operations

New aircraft
performance data

Airline schedule data

New aircraft

cost data Load factor

data

Load factor
data

Revenue and load e\ ‘N
factor data "o AL LG & ¥ S Airline

Compute - AN T W |
Airline Profit SR 8- h) schedule data

Performance
data

Different subspaces and their interactions

Newly introduced “Economic” subspace to better
calculate the fleet-level profit o



To address the monolithic problem, we developed a
new optimization framework - A Mixed Integer
Efficient Global Optimization (AMIEGO)

< Step 0 >Preprocessing

Initial Sampling

Leverages adjoint-based method to

. ) Expensive Continuous St 2 <
address large-scale continuous Optimization ep
design space

Build Surrogate

Maximize:
Expected

Improvement

Termination
Criteria Check

Can handle fully coupled expensive design-allocation-revenue
management subspaces, moderate-scale integer design space
and large-scale continuous design space

[Roy and Crossley, AIAA, 2016-1659]
[Roy, Moore, Hwang, Gray, Crossley, and, Martins, AIAA, 2017-1305] °°



We tested the design, allocation and revenue
management problem on a 11 route problem using FLOPS

Airline fleet composition

14

11

B757-200 A320-200 AC-X

Goal is to design a 162 seat, 2940nmi passenger aircraft, ‘yet-to-be-acquired’ by the
airline (based on Boeing 737-800 aircraft)

This problem has 33 integer variables of the allocation problem and 61 continuous
variables of the design and revenue management problems



Design-allocation-revenue management optimization yielded
large profit increases with the simultaneous approach

+ 19.08%
+0.12% Increase

—_
N B

1ncrease

Fleet-level profit
(normalized)
© O
o 0 =

o O
N A

0

Baseline Sequential Simultaneous
(No design optimization step)

Demonstrates the need to capture the synergism that exists among the interacting group
of subspaces

[Roy, S., Ph.D. Thesis, Purdue University, 2017]  s7



We have ported AMIEGO to OpenMDAO

s=RIMIDIAIO

Available as an MINLP driver . _

Initial aggressive splitting feature (step 4 of
AMIEGO) makes efficient use of parallel X2
computing resources — helps get rid of vast
majority of design space

Processor Utilization during Successive Branch and Bound Iterations

- x1

000000

58



Summary for Subproject 4

Phase 2 achievements:

* Developed the ability to pose and
solve design and allocation as a
monolithic optimization problem

* Introduced revenue management
subspace

* Developed a new optimization
framework (AMIEGO) to address
14 N expensive MINLP problems

12 +0.12% Increase

1 mcrease
0.8
e I I I Next steps:
2 * Replace FLOPS with the high fidelity

Baseline Sequential Simultaneous an aIyS|S tOOIS

(No design optimization step)

Engineering Operations

Fleet-level profit
(normalized)

59



Subproject 5;
A low-order model for transonic flutter prediction
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Research problem

> Commercial transport aircraft fly in transonic flow regime

> Need accurate transonic flutter models for conceptual
aircraft design

> Models need to be cheap to allow for thousands of
design iterations

Goals

> Develop physics-based low-order model for transonic
flutter over airfoils

> Train coefficients of low-order model using high-fidelity
Euler/RANS simulations



Our approach

First principles

Physics-based
low-order model
with unknown
coefficients

High-fidelity
Euler/RANS
simulations

Calibrate
low-order model

Final physics-based
low-order model
for transonic flutter




Helmholtz decomposition
Any external velocity field is uniquely defined by its divergence
and curl (volume-source and vorticity) fields

Basic idea: Represent o (r,t) and w (r, t) fields by only their
lowest spatial moments

_/
_ // ‘r r/‘2d¢4/—|——// w(r',t) ’r r/‘zd.A/—FV




Typical section structural model

mAh + kpAh + SgAO = —AL
SoAh + kA0 + I Af

AM + ALd

(Bisplinghoff et al. 1996)

AL(t) = pooVao AT + poocAT + AL (t)
AM(t) = AM () + AM(t),




Fitting the aerodynamic model

—at —ar 0] rarm] [== =L -4 [Ae
0 0 1|]|Ak@®|+] 0 0 0 |][A()
| Br By Bi] [AR(D)] Lo 0 0 ] [Aw(®)

Use Dynamic Mode Decomposition (DMD) (schmid 2010, Proctor et a. 2016) tO find A,

and B,



Flutter boundary as a function of CG using LOM

Airfoil parameters (Drela 1999)
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Influence of lift coefficient on flutter boundary
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For this case p = 40, wp/wp = 0.9, 15 = 2.5, Teo/c = —0.35, x4 /c = 0.35 for
11% thick transonic airfoll.

o
-

For low freestream Mach numbers there is barely any dependency on the
baseline lift coefficient, but for transonic Mach numbers this dependency becomes
substantial.

The dots indicate where we calibrate the model, the lines in between are
computed using splines for the entries in the aerodynamic state space matrix.



Validation

. 3 ; o Alonso & Jameson (1994)
Losl 72 | @« Thomas (1999)
N ~ Liu et al. (2001)
o2 & —O— o Sanchez et al. (2016)
= > SU2 — same mesh
;8 1.5 ¢ e Current method
>
= ]
2
E05F
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O | | | | | | | |
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Mach number, M [—]

Good agreement with other methods. S-shape of flutter boundary is not
recovered. However, this is not a problem since we intend to use the model in a
design setting. An optimal design should never operate in the upper stability
region.



Summary for Subproject 3

Phase 2 achievements:

* Developed accurate fast method to
include transonic flutter constraints in
conceptual aircraft design

* Demonstrated approach on 2D
problem

—
T

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mach number, M, [—|

Next steps:
* Extend approach to 3D

* Implement a flutter constraint
computation for the TWB

69



. A new modular, scalable, and general nhumerical optimization
algorithm that handles parallel problems

. A parallel, scalable framework for MDO and gradient computation
(hnow implemented in OpenMDAO)

. A matrix-free CFD adjoint

. A component-based geometry manipulation for aerostructural
optimization of full unconventional configurations

. An adjoint-based mission analysis and trajectory optimization code

. A method for simultaneously optimizing aircraft trajectory and
allocation

. A framework for performing aircraft design optimization under
uncertainty

. A new technique for low-order modeling with application to flutter



22 papers

2 PhD thesis

1 Masters thesis

1 researcher hired by NASA

1 researcher hired by AFRL

4 software package contributions:
* OpenMDAO

 Kona

* pyMission

 AMIEGO
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