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Objectives
•Develop luminescence-based temperature measurement 
capability with major advantages over thermocouples and 
pyrometry for turbine engine environment.

•Take advantage of breakthrough discovery of high temperature 
ultra-bright luminescence by Cr-doped GdAlO3.

•Technical approach: take advantage of ultra-bright 
luminescence at high temperatures

•Develop optical thermometer for probing engine environment.
•Demonstrate 2D temperature gradient mapping using Cr-doped 
GdAlO3 coatings.
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Innovation
Breakthrough discovery of exceptional high temperature 
retention of ultra-bright luminescence by Cr-doped 
GdAlO3with orthorhombic perovskite crystal structure: Cr-
doped gadolinium aluminum perovskite (Cr:GAP).
•High crystal field in GAP suppresses thermal quenching of luminescence.
•Novel utilization of broadband spin-allowed emission extends 
luminescence to shorter wavelengths where thermal radiation 
background is reduced.

Enables luminescence-based temperature measurements in 
highly radiant environments to 1200ºC.
•Huge advance over state-of-the-art ultra-bright luminescence upper 
limit of 600ºC.
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Turbine engine temperature measurements?
Now we’re talking!
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Background
• Almost all thermographic phosphor temperature measurements use 

luminescence from transition metal or rare earth dopants.

• Turbine engine temperature measurements need best-of-both-worlds 
performance of high intensity emission that persists above 1000ºC.

Transition metal (e.g., Cr3+)
3d transitions

Rare earth (e.g., Dy3+)
4f transitions

Unshielded Shielding by 5s & 5p electrons

Strongly phonon & bonding 
coupled

Weakly phonon & bonding 
coupled

Very strong oscillator strength Very weak oscillator strength
by ~4 orders of magnitude

Strong thermal quenching
Cr:Al2O3 performs up to 600ºC

Weak thermal quenching
Dy:YAG performs up to 1700ºC

Short λ emission not available
R lines @~700 nm

Short λ emission available
Dy3+ @456 nm
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4A2

2E (long-lived reservoir level)

4T2 (short-lived but 
population stabilized by 
thermal equilibrium with 
2E reservoir level)

3d3

Physics Basis for Phosphor Matrix Selection
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Spin-allowed broadband emission
4T2 → 4A2

For long τ at high T → increase ∆E, ∆Eq.

From Zhang, Z., Grattan, K.T.V., and Palmer, A.W., Phys. 
Rev. B 48, 7772 (1993).

Spin-forbidden R-line emission
2E → 4A2
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Orthorhombic
(distorted octahedra, strong absorption)

Orthorhombic Rare Earth Perovskites RAlO3 Meet Criteria
Tightly bonded AlO6 Octahedra Exhibit Strong Crystal Field

Al, Cr
R

O

Ideal 
cubic                

Rhombohedral 
(near-cubic symmetry, weak absorption)

(No parity-forbidden 4A2→2T1, 2T2 absorption)

Among all RAlO3 perovskites, GdAlO3 has highest 
∆E among candidates with orthorhombic structure.
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Progress to Date
•Demonstrated temperature measurement capability of 
Cr:GAP luminescence.
•Successful development of optical thermometer using 
Cr:GAP-coated sapphire lightpipes.
•Coatings developed for 2D temperature mapping.
•Patent application, conference presentation, and article 
submitted for conference proceedings.
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Demonstrating Temperature Measurement Capability
Time-Averaged Luminescence Emission  from Cr(0.2%):GAP Puck

Temperature Dependence
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T=15ºC

10

100

1000

10000

5000
10000

15000

20000

25000
550 600 650 700 750 800 850

Int
en

sit
y

Time (µsec)

Wavelength (nm)

 

Demonstrating Temperature Measurement Capability
Time-Resolved Decay of Luminescence Emission  from Cr(0.2%):GAP Puck

T=15ºC

T=1072ºC T=1072ºC

•Logarithmic intensity scale shows uniform decay rate over full wavelength range at each T.
•Adequate signal for decay time determination at wavelengths as short as 570 nm at 1072ºC.
•Subsequent luminescence decay measurements use bandpass filter @593 nm, FWHM = 40 nm.
•Best compromise between signal intensity & reducing thermal radiation background.
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Demonstrating Temperature Measurement Capability
Luminescence Decay Measurement Setup
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Demonstrating Temperature Measurement Capability
Luminescence Decay Curves from Cr:GAP Puck Using Bandpass Filter
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Demonstrating Temperature Measurement Capability
Calibration of Decay Time vs. Temperature for Cr:GAP Puck

     

Temperature (ºC)
200 400 600 800 1000 1200

D
ec

ay
 T

im
e 

(s
ec

)

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

kTEEqkTE

kTE
R
E ee

e
/)(/

/

2 1
31 Fit to ∆+∆−∆−

∆−

++
+

=
βα

ττ

Two distinct regions
200ºC<T<750ºC: less temperature sensitive
T>750ºC: more temperature sensitive
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signal

Optical Thermometer Demonstration
Setup
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Optical Thermometer Demonstration
Luminescence Decay Curves from Cr:GAP on Tip of 2mm diam Sapphire Rod

•Good agreement between decay curves from optical thermometer & Cr:GAP puck.
•Intrinsic luminescence from sapphire rod produces small upward deviation of thermometer decay curves.
•Easily corrected for temperature readings.



NARI

Optical Thermometer Demonstration
Limits to Sapphire Fiber Performance

400 µm diameter fiber at 975ºC
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•Intrinsic luminescence from sapphire fiber overwhelms Cr:GAP luminescence. 
•Interfering luminescence from Cr impurities in sapphire fiber.
•Solution: Lower Cr impurity sapphire fibers or YAG fibers (where Cr impurities produce less luminescence).
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Coatings for 2D Temperature Mapping
Electron Beam Physical Vapor Deposition Issues

• Deposition of Cr:GAP by EB-PVD at Penn State proved to 
be more challenging than anticipated.
– Top of Cr:GAP ingot explodes under electron beam heating.
– Ingot fractures due to thermal shock.

• Successful Resolution: Top section of ingot removed & 
then use extremely gentle electron beam heating.

Ingot in EB-PVD chamber showing 
explosion debris from electron beam heating

Ingot removed from EB-PVD chamber 
showing thermal-shock fracture
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Coatings for 2D Temperature Mapping
Luminescence Decay Curves from 25 µm Thick EB-PVD Cr:GAP Coating
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Superb signal-to-noise from thin 25 µm thick coating confirms 
retention of ultra-bright luminescence at high temperatures.
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Coatings for 2D Temperature Mapping
Luminescence Decay Curves

25 µm Thick EB-PVD Cr:GAP Coating vs. Cr:GAP Puck

•More pronounced fast initial decay (τ1) from EB-PVD coatings.
•Good agreement between long decay constants (τ2).
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Coatings for 2D Temperature Mapping
Decay Time vs. Temperature Calibration for 25 µm Thick EB-PVD Cr:GAP Coating

Decay time (τ2) vs. temperature dependence for thin EB-PVD 
Cr:GAP coating follows same calibration curve as Cr:GAP puck.
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Coatings for 2D Temperature Mapping
Cr:GAP-Coated Specimens with Cooling Holes Ready for 2D Temperature Mapping

Side 
view

90º

1” 
diam

0.125” 
thick

20º

Specimens ready for 2D mapping of thermal gradients around 
cooling holes during exposure to high heat flux laser.
Scheduled for July 2012 for completion of Phase I milestones.

Top 
view

EB-PVD 
Cr:GAP
coated 

specimens

EDM 
90º 
holes

Laser-
drilled 
20º 
holes

Procedure
•90º or 20º cooling holes machined into TBC-
coated specimen by EDM or laser drilling.
•25 µm thick Cr:GAP deposited by EB-PVD.
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Distribution/Dissemination
•Patent application filed in November 2012: “Temperature and Pressure 
Sensors Based on Spin-Allowed Broadband Luminescence of Doped 
Orthorhombic Perovskite Structures.”
•Presentation at 9th International Temperature Symposium, Anaheim, 
March 2012: “Temperature Sensing Above 1000ºC Using Cr-Doped 
GdAlO3 Spin-Allowed Broadband Luminescence.”
•Article submitted to 9th International Temperature Symposium 
Conference Proceedings (same title as presentation).
•Interest expressed from NASA Vehicle Integrated Propulsion Research 
(VIPR) and AFRL Versatile Affordable Advanced Turbine Engines (VAATE) 
projects.

June 5-7, 2012 NASA Aeronautics Mission Directorate FY11 Seedling Phase I Technical Seminar 
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Predicted Impact
•Will provide a ready-to-adopt technology for acquiring 
accurate noncontact surface temperature measurements in 
turbine engine environments (both air- & land-based 
engines).
•Will replace thermocouples and pyrometers whenever 
thermocouple attachment and pyrometer errors are issues.
•Will become important validation tool for thermal profiling 
of turbine engines designed for reduced fuel consumption 
and cleaner fuel burn.
•Near-term: Attractiveness as thermographic phosphor for 
turbine engine environments may lead to adoption as 
phosphor of choice in NASA VIPR and AFRL VAATE projects.

June 5-7, 2012 NASA Aeronautics Mission Directorate FY11 Seedling Phase I Technical Seminar 
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Next Steps

June 5-7, 2012 NASA Aeronautics Mission Directorate FY11 Seedling Phase I Technical Seminar 

•Extend optical thermometer capability from 1100º to 1200ºC using either 
higher purity sapphire or alternative YAG fiber lightpipes.
•2D mapping of thermal gradients around cooling holes in button specimens 
exposed to high heat flux laser.

•Waiting for facility availability in July 2012 to complete Phase I milestones.

Phase II
•Move from coupon specimens in laboratory to actual components in 
combustion environment.

•2D temperature mapping around cooling holes in Honeywell vane during exposure 
to afterburner flame of J85 GE-5 engine at AEDC, made possible with in-kind 
support from AFRL & Honeywell.

•Integrate low-power LED excitation into on-wing-compatible temperature 
probe for engine insertion. Honeywell HPT

Stator Vane Doublet
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Summarized Accomplishments

•Demonstrated temperature measurement capability of 
Cr:GAP luminescence to 1200ºC.
•Successful development of optical thermometer using 
Cr:GAP-coated sapphire lightpipes.

•Sapphire-rod-based thermometer demonstrated to 1100ºC. 
•Higher purity sapphire fibers or YAG fibers expected to extend performance 
up to 1200ºC. 

•EB-PVD deposition of Cr:GAP coatings successfully 
developed that exhibit desired ultra-bright luminescence 
above 1000ºC.

•Specimens with cooling holes produced for 2D thermal gradient 
mapping.

•Phase II framework for transition to actual components in 
combustion environment.

June 5-7, 2012 NASA Aeronautics Mission Directorate FY11 Seedling Phase I Technical Seminar 
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