Deterministic and stochastic buckling analysis for imperfection sensitive stiffened cylinders

Ke Liang
presented by Martin Ruess

Aerospace Structures and Computational Mechanics
Faculty of Aerospace Engineering
Delft University of Technology, The Netherlands
- design concept with knock-down factors
- deterministic analysis
- stochastic analysis
- combined knock-down factor
- conclusions
The concept of knock-down factors – introduction.

- Formula: \(F_{\text{design}} = F_{\text{perfect}} \times k \)
 - \(k < 1 \) knock-down factor

Graph showing the relationship between load (\(f \)) and displacement (\(u \)) for perfect and imperfect structures.
concept of knock-down factors – introduction

- standard design approach based on NASA SP-8007 (1968)
- provides lower-bound curves from experimental data
concept of knock-down factors – introduction

- experimental testing & numerical prediction improved
- SP-8007 seems to be too conservative

Example: CFRP cylinder
- Total length = 540 mm
- Free length = 500 mm
- Ply orientation = +24,-24,+41,-41
- Radius = 250 mm
- Thickness = 0.5 mm
- $R/t = 500$
- $F_{\text{perfect}} = 32 \text{ kN}$

CFRP – carbon fibre reinforced polymer
less conservative design approach proposed, based on numerical simulation results

old: \[F_{\text{design}} = F_{\text{perfect}} \times k_{\text{nasa}} \]

new: \[F_{\text{design}} = F_{\text{perfect}} \times k_1 \times k_2 \]

\(k_1 \) considers **geometric imperfection** using deterministic methods
\(k_2 \) considers **other imperfections** using stochastic methods
The **new design concept** was tested exemplarily with two **stiffened** test cylinders.

<table>
<thead>
<tr>
<th>id</th>
<th>material E, μ</th>
<th>cylinder radius</th>
<th>cylinder height</th>
<th>skin thickness</th>
<th>stiffener thickness</th>
<th>stiffener height</th>
<th>stiffener number</th>
<th>NASA SP8007 knock-down factor</th>
<th>Test ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>70000, 0.34</td>
<td>400</td>
<td>1000</td>
<td>0.8</td>
<td>0.8</td>
<td>5.2</td>
<td>90</td>
<td>0.4616</td>
<td>?</td>
</tr>
<tr>
<td>B</td>
<td>70000, 0.34</td>
<td>400</td>
<td>1000</td>
<td>0.55</td>
<td>0.55</td>
<td>5.2</td>
<td>126</td>
<td>0.4387</td>
<td>YES</td>
</tr>
</tbody>
</table>

Two different **numerical models** were used:

- stringer shell model
- smeared shell model
buckling analysis – **stringer shell model**

- explicitly modeled shell stringers
- 174960 S4R shell elements (Abaqus)
- S4R: reduced integration to avoid locking
- hourglass modes exist

discretization

- axial directions: 216 elements
- between two stringers: 6 elements
- stiffener height: 3 elements
buckling analysis – **smeared shell model**

- no modeled shell stringers
- 25100 S4R shell elements (Abaqus)
- less elements (factor 7)
- consideration of measured geometric imperfections of unstiffened cylinders

\[
K = \begin{bmatrix}
73747.59668 & 21528.72 & 0 & 31283.4956 & 0 & 0 \\
21528.72 & 63319.7648 & 0 & 0 & 0 & 0 \\
0 & 0 & 20895.5224 & 0 & 0 & 0 \\
31283.4956 & 0 & 0 & 120724.922 & 1148.1984 & 0 \\
0 & 0 & 0 & 1148.1984 & 3377.05412 & 0 \\
0 & 0 & 0 & 0 & 0 & 1321.9469 \\
\end{bmatrix}
\]
Buckling Analysis - Comparison Model A

- Number of stiffeners: 90
- Thickness skin/stiffener: 0.8 mm

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Linear Buckling Load F_{perfect}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stringer model</td>
<td>205.92 kN</td>
</tr>
<tr>
<td>(174960 elements)</td>
<td></td>
</tr>
<tr>
<td>Smeared model</td>
<td>203.27 kN (rel. dev 1.29%)</td>
</tr>
<tr>
<td>(25100 elements)</td>
<td></td>
</tr>
</tbody>
</table>

First buckling mode:
- **Stringer model**
- **Smeared model**

** TU Delft **

Challenge the future
buckling analysis – **comparison model B**

- number of stiffeners: 126
- thickness skin/stiffener: 0.55 mm

<table>
<thead>
<tr>
<th>model type</th>
<th>linear buckling load</th>
<th>F_{perfect}</th>
</tr>
</thead>
<tbody>
<tr>
<td>stringer model</td>
<td></td>
<td>103.09 kN</td>
</tr>
<tr>
<td>(174960 elements)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>smeared model</td>
<td></td>
<td>103.76 kN (rel. dev 0.65%)</td>
</tr>
<tr>
<td>(25100 elements)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **first buckling mode**
 - **stringer model**
 - **smeared model**
analysis design – **deterministic study**

\[F_{\text{design}} = F_{\text{perfect}} \times k_1 \times k_2 \]

- \(k_1 \) considers **geometric imperfection** using deterministic methods
- \(k_2 \) considers **other imperfections** using stochastic methods

methods used to model geometric imperfections

- single perturbation load approach (SPLA) applied to the **stringer model**
- modeling of measured imperfections (Z15, Z17, Z20) applied to the **smeared model**
knock-down curves – deterministic study

single perturbation load approach applied to stiffener model
- SPL on stiffener
- SPL in skin

![Graph](image-url)

- SPL on stiffener: global buckling
- SPL on stiffener: first buckling
- SPL on skin: global buckling
- SPL on skin: first buckling
imperfection approach applied to smeared model – cylinder \(A \)

with averaged knock-down factors from results of three measurements \(Z_{15}, Z_{17}, Z_{20} \)
imperfection approach applied to smeared model – cylinder B

with averaged knock-down factors from results of three measurements Z15, Z17, Z20
knock-down factors – deterministic study

<table>
<thead>
<tr>
<th>method</th>
<th>cylinder A</th>
<th>cylinder B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 bar</td>
<td>0 bar</td>
</tr>
<tr>
<td></td>
<td>0.2 bar</td>
<td>0.2 bar</td>
</tr>
<tr>
<td>SPLA</td>
<td>0.620</td>
<td>0.640</td>
</tr>
<tr>
<td></td>
<td>0.800</td>
<td>0.828</td>
</tr>
<tr>
<td>meas. geometric imperfections</td>
<td>0.621 (rel dev. 0.29%)</td>
<td>0.638 (rel dev. 0.31%)</td>
</tr>
<tr>
<td></td>
<td>0.785 (rel dev. 1.87%)</td>
<td>0.804 (rel dev. 2.89%)</td>
</tr>
</tbody>
</table>

- here: sufficient correspondence
- k_1 used from single perturbation load approach
\[F_{\text{design}} = F_{\text{perfect}} \times k_1 \times k_2 \]

- \(k_1\) considers **geometric imperfection** using deterministic methods
- \(k_2\) considers **other imperfections** using stochastic methods

cases considered

1. geometric imperfection **not included**
 applied to the smeared model to obtain \(k_2\)

2. geometric imperfection (Z15, Z17, Z20) **included**
 applied to the smeared model for comparison with new KDF
Monte Carlo simulation based on ABAQUS

- buckling considered as probabilistic phenomenon due to distribution of input parameters

- scatter of input parameters
 - material
 - thickness
 - geometric imperfection
 - load imperfection

- nonlinear buckling analyses

- analysis results
 - results provide distribution of buckling loads
 - lower bound defined with 99% confidence level determines KDF

Matlab

ABAQUS

Python & Matlab
assumed normal distribution of input parameters (material, thickness skin & stiffener, applied compressive load) with

- a coefficient of variation (CV) = 5% (measure of dispersion)
 - σ: standard variation
 - mean μ := initial design / measured value
- number of samples used: 5000
- examples: modulus of elasticity, applied load

\[
CV = \frac{\sigma}{\mu}
\]
input parameter distribution – stochastic study

used checks for normal distribution of the input parameter
mean $\mu = \text{initial design / measured value}$

1. histogram

2. cumulative distribution function (CDF)

3. Lilliefors test: data accept the normal hypothesis with a 99% confidence level
- CV (coef. of variation) of load imperfection was varied: 3% 5% 10%

<table>
<thead>
<tr>
<th>method</th>
<th>cylinder A</th>
<th>cylinder B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 bar</td>
</tr>
<tr>
<td>geometric imperfections not included</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV=3%</td>
<td>0.86</td>
<td>0.85</td>
</tr>
<tr>
<td>CV=5%</td>
<td>0.85</td>
<td>0.83</td>
</tr>
<tr>
<td>CV=10%</td>
<td>0.81</td>
<td>0.79</td>
</tr>
<tr>
<td>stochastic with geometric imperfections included</td>
<td>Z15</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>Z17</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Z20</td>
<td>0.68</td>
</tr>
</tbody>
</table>
combined knock-down factors – design values

\[F_{\text{design}} = F_{\text{perfect}} \times k_1 \times k_2 \]

<table>
<thead>
<tr>
<th>method</th>
<th>cylinder A</th>
<th>cylinder B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 bar</td>
<td>0.2 bar</td>
</tr>
<tr>
<td>(k = k_1 \times k_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>geometric imperfections (k_1)</td>
<td>CV=3%</td>
<td>0.53</td>
</tr>
<tr>
<td>geometric imperfections (k_2)</td>
<td>CV=5%</td>
<td>0.52</td>
</tr>
<tr>
<td>geometric imperfections (k_2)</td>
<td>CV=10%</td>
<td>0.50</td>
</tr>
<tr>
<td>other imperfections (k_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stochastic with geometric imperfections included</td>
<td>Z15</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>Z17</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Z20</td>
<td>0.68</td>
</tr>
</tbody>
</table>
combined knock-down factors – design values

cylinder A – 0 bar

- $k_{(\text{NASA})} = 0.46$
- $k_{(3\%)} = 0.53$ (16%)
- $k_{(5\%)} = 0.52$ (14%)
- $k_{(10\%)} = 0.50$ (9%)

cylinder B – 0 bar

- $k_{(\text{NASA})} = 0.44$
- $k_{(3\%)} = 0.54$ (24%)
- $k_{(5\%)} = 0.53$ (21%)
- $k_{(10\%)} = 0.50$ (15%)

NASA SP-8007
combined knock-down factors – design values

cylinder B – 0.2 bar

- $k_{\text{Seide}} = 0.648$
- $k_{(3\%)} = 0.74 \ (14\%)$
- $k_{(5\%)} = 0.72 \ (11\%)$
- $k_{(10\%)} = 0.69 \ (7\%)$
summary / conclusions

- **buckling performance** of two stiffened cylinders was analysed
- **smeared model** used
 - considers measured geometric imperfections
 - reduces computational complexity in stochastic MC-based analysis
- **two knock-down factors** derived
 - k_1 deterministic analysis \rightarrow geometric imperfections
 - k_2 stochastic analysis \rightarrow other imperfections (load, material,...)
- combined approach is
 - robust and less conservative compared to NASA SP8007
 - more conservative than a pure stochastic approach
DESICOS

New Robust DESign Guideline for Imperfection Sensitive COMposite Launcher Structures

DLR Germany
ASTRIUM-F (Astrium SAS) France
ASTRIUM-D (Astrium GmbH) Germany
GRIPHUS Israel

TU Delft | The Netherlands | k.liang@tudelft.nl
Leibniz Universität Hannover Germany
Private University of Appl. Sc. Göttingen Germany
POLIMI - Politecnico di Milano Italy
Riga Technical University Latvia
RWTH Aachen Germany
TECHNION Israel

CRC-ACS – Coop. Research Australia Centre for Adv. Composite Structures
NASA USA