

HEATheR

High-efficiency Electric Aircraft Thermal Research Sydney Schnulo – Modeling Team Lead Ralph Jansen – Pl Kevin Antcliff – Co-Pl

Electric Aircraft Propulsion reduces emissions and expands air travel.

→Commercial: reduction in emissions and fuel burn →Short Haul: lower operating costs for regional operations → Urban Air Mobility: distributed electric propulsion for VTOL vehicles

Problem: Current electrified aircraft concepts produce large amounts of low-grade waste heat and require large, heavy thermal management systems that cause drag.

Current electrified aircraft concepts produce large amounts of **low-grade waste heat**

This problem spans markets:

Urban Air Mobility 1 MW power 200 kW heat **Short Ha** 3 MW pc **600 kW l** Current electrified aircraft concepts require large, heavy thermal management systems that cause drag

Idea: Build a power system with 4x lower losses to enable OML cooling

Idea: Build a power system with 4x lower losses to enable OML cooling

ELIMINATE HALF OF THE CONVERSION STEPS AND COMPLEXITY

MAKE EXTREMELY LOW LOSS COMPONENTS

Idea: Build a power system with 4x lower losses to enable OML cooling

Aircraft level performance improves with reductions in HEAT and WEIGHT

- Heat reduction of 75 percent
- Power system weight reduces by 40 percent
- Thermal management system weight reduces by 60 percent

Two key technologies being developed:

1) HEMM: High Efficiency Megawatt Motor

HEMM Progress - Rotor

No detectable degradation in superconductor thermal cycling

HEMM Progress - Stator

Demonstrated ability to stay under temperature limit at full current and improved potting process.

2) AC-AC Converter

Key Performance Goals:

- 99% efficient
- 10 kW/kg Utilizing most advanced SiC
 FETs

Interleaving to allow large power switches to have a higher effective switch frequency Multilevel topology to reduce voltage per power switch

AC-AC Converter Progress

HEATheR Team

External Partners

Transfer of technology development

Thank you

Sydney Schnulo – Modeling Team Lead Ralph Jansen – PI Kevin Antcliff – Co-PI