

ARMD Transformative Aeronautics Concepts Program Convergent Aeronautics Solutions Execution Project

Compact Additively Manufactured Innovative Electric Motor (CAMIEM)

CAS Showcase 2019

November 13 - 14, 2019 Michael Halbig (PI) Samuel Hocker (Co-PI)*

Images are credit NASA unless otherwise specified

Targeted – Big Questions

- Can we enable cleaner, more fuel efficient aircraft using hybrid/electric propulsion?
- Can we dramatically increase the power density of electric machines?
- Focus Toward NASA Aeronautics Research Six Strategic Thrusts

Ultra-Efficient Commercial Vehicles

 Pioneer technologies for big leaps in efficiency and environmental performance

Transition to Low-Carbon Propulsion

 Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

CAMIEM Big Question: Can emerging manufacturing technologies, namely Additive Manufacturing (AM), enable novel electric motor concepts for achieving the high power densities required for future hybrid propulsion?

Relevance to Aerospace

Urban Air Mobility

NASA 15 Passenger Tilt-wing

% Change from Baseline

Efficiency = 95%

Specific power = 9.4 hp/lb (15.4 kW/kg) Baseline Specific power = 3.13 hp/lb (5 kW/kg)

28.4% reduction in Gross weight 24.1% reduction in Mission energy

> Increase in Power-to-Weight ratio by 1 hp/lb results in a gross weight reduction of ~500 lbs and an energy reduction of ~1330 MJ

Efficiency = 100%

9%

Specific power = 3.13 hp/lb (5 kW/kg) **Baseline Efficiency = 95%**

4.4% reduction in Gross weight

7.2% reduction in Mission energy

Aerospace Systems

ech 🛚 Desian Laboratory

State of the Art (SoA) Motor

Performance Specs:
<u>8.3 kW at 7500 rpm</u>
94% efficient
4.0 kW/kg power density (below max. allowable temp.)

4

Already SoA due to compact design, halbach array of magnets, and high power density.

Disruptive: Leap Beyond Current SoA

5

Estimated Performance Improvements due to Additively Manufactured Iron Core Stator

- CAMIEM stator designs leverage material selection and additive manufacturing to increase max. temperature and the motor constant.
- ΔP_{specific} 1.68x improvement was predicted via model calculations.

Structural Components

- CAMIEM structural components leverage additive manufacturing to reduce mass and improve cooling.
- ΔP_{specific} 1.2x improvement was predicted via model calculations

(-6% of full motor)

$$\Delta P_{specific} = \Delta K_m \cdot \sqrt{\frac{T_{stator max} - T_{ambient}}{\Delta R_{thermal}}} \cdot \frac{\Delta \omega_{shaft}}{\Delta mass_{total}} \qquad \Delta P_{specific} = \mathbf{1} \cdot \mathbf{2} = 1 \cdot \sqrt{\frac{1}{0.75}} \cdot \frac{1}{0.96}$$
Save Mass Improve Cooling Predict: 20% increase in P_{specific}

$$\mathbf{1} = \mathbf{1} \cdot \mathbf{1}$$

$$\mathbf{1} = \mathbf{1} = \mathbf$$

Both contribute to cooling and thereby decreasing $\Delta R_{thermal}$ down to at least 0.75.

CAMIEM: Feasible Power Density Improvement

- Combined CAMIEM structural components feasible stator improvements that leverage additive manufacturing to increase the power density.
- ΔP_{specific} = 2x improvement is feasible

$$\Delta P_{specific} = \Delta K_m \cdot \sqrt{\frac{T_{stator max} - T_{ambient}}{\Delta R_{thermal}}} \cdot \frac{\Delta \omega_{shaft}}{\Delta mass_{total}} \qquad \Delta P_{specific} = \mathbf{2.0} = 1.62 \cdot \sqrt{\frac{1.44}{0.75}} \cdot \frac{1}{1.12}$$

Structural Components

Feasible Stator Improvements

Predict: 100% increase in P_{specific}

8

[kW/kg] Power Density Propeller Test

Disruptive: Leap Beyond Current SoA

CAMIEM - <u>Compact Additively</u> <u>Manufactured Innovative Electric Motor</u>

Teaming - Partner Roles

NASA GRC

- Stator design and fabrication; direct printing of conductive layers and multi-material systems
- System analysis
- Electric motor testing

NASA LaRC

- Design and development of AM metallic structural components: rotors, housing, finned cooling ring for stator
- Computed tomography

Neil A. Armstrong Flight Research Center

NASA AFRC

- Electric motor testing in a propeller test stand

TECHNOLOGIES

LaunchPoint Technologies

- Baseline electric machine
- Innovative electric machine designs
- Industry perspective on AM impact on design, cost, and fabrication

University of Texas El Paso

- AM of 3D electronic structures
- Printing of thermoplastic substrates with copper wire incorporation

Objective: Utilize AM methods to achieve new motor designs that have higher power densities and manufacturing benefits.

The Take-Aways

- Electric Motors move Electric aircraft through the air
 - Aviation pushes motor tech to the edge
 - Additive manufacturing can lead to improved motors
- AM design space can be leveraged for electric motors
 - Complex shapes are often enabled by AM
 - Lower up-front tooling and drawing costs to evaluate designs for custom aircraft
 - In the AM design space, complex thermal management components and some novel stator designs can be highly optimized for weight and performance
 - Legacy manufacturing techniques are inescapable
 - AM is a compliment to legacy manufacturing techniques
 - Good topological optimization can lead to good designs, but not all will require additive manufacturing

The CAMIEM Team

Organization	Name	Role Organization		Name	Role
Glenn Research Center	Michael Halbig	PI		Ethan Niemen	Ground testing
	Mrityunjay "Jay" Singh		Armstrong Flight Research Center	Otto Schnarr III	Electric propulsion ground testing
	Valerie Wiesner	AIM		Kirsten Fogg	
	Greg Piper / Daniel Gorican	AM /Direct printing		Patricia Martinez	
	Derek Quade	Dynamometer	350	Samuel Hocker	AM
	Steven Geng	Motors and magnets	Langley Research Center	Christopher Stelter	
	Chip Redding	Design		Russell "Buzz" Wincheski	NDE
	Chun-Hua "Kathy" Chuang	Insulator materials		Stephen Hales	Materials evaluation
	Peter Kascak	Electric motors	111	John Newman	Computational materials
	Jeff Chin	System benefits		Jose Coronel	
LaunchPoint Technologies	Michael Ricci	Baseline & innovative	University of Texas El Paso	David Espalin	efficiency
	Brian Clark			Ryan Wicker	
	Dave Paden				X 1 2 070

Also Summer Interns at GRC and LaRC.

BACK-UP Slides

Heat Sink Design Iterations

Xtreme challenge or impossible without AM

Heat sink ring: Design1

0° fin angle

Design2 with airfoil fins

Model for Heat Sink Ring Benefit to Thermal Management

(a) with heat sink ring

(b) without heat sink ring

degC

Disruptive: Leap Beyond Current SoA

Results for Uber eCRM-002

Specific power = 9.4 hp/lb (15.4 kW/kg) Baseline Specific power = 3.13 hp/lb (5 kW/kg)

18.6% reduction in Gross weight

17.1% reduction in Battery energy

8

 Increase in Power-to-Weight ratio by 1 hp/lb results in a gross weight reduction of ~300 lbs and an energy reduction of ~27 MJ

Efficiency = 100%

Specific power = 3.13 hp/lb (5 kW/kg) Baseline Efficiency = 95%

2.7% reduction in Gross weight

7.7% reduction in Battery energy

System Studies

System studies looked at benefits from improved motor performance within the ranges of:

- 85-100% efficiency
- 3.13 15.00 hp/lb power density.

 Urban Air Mobility – Georgia Tech Analysis (under a CAS contract to work with FY17 initiated Activities including CAMIEM):

Georgia Aerospace Systems Tech Design Laboratory

Uber Elevate

•VTOL, 4 PAX
•1100 lbs max payload; 7000 lbs max TOGW
•60 mi design range, 25 mi nominal trip distance

•8 rotors with 2 rotors at each tip

NASA 15-Passenger Tilt Wing

•15 PAX, tiltwing
•4 x 731 hp (545 kW) high-speed/low torque motors
•3000 lbs payload; 14,039 lbs max TOGW
•400 nmi design range

Comparison of Methods to Obtain Outside Fabrication for Channeled Plates for GRC Stators

Concept A - Stator Plates from Cobalt-Iron Alloy

Concept B - Stator Plates from Cirlex

Concept B - Stator Plates from Ultem1010

Fabrication Method Fabrication Time

Fabrication Costs Material Costs Total Costs

Machine/EDM Machine/Mill 4+ months

\$600

\$21,400

\$22,000

3 months

\$19,870 \$330 \$20,200

3D Print/FDM 1 week (92.3% reduction)

\$1,000 \$0 (included in fab.) \$1,000 (95.0% reduction)

20

Currently relying on machined stator plates.

Conclusions

- AM enables innovative component designs to be pursued.
- Motor component fabrication will rely on single and/or combined utilization of AM, conventional, and machining.
- Multi-material AM and hybrid manufacturing is feasible for complex component fabrication but full motor fabrication on a single machine is not currently achievable.
- 1.75x increase in power density and 2x increase in torque density projected (CAMIEM effort). Further increases achievable.
- AM offers additional benefits (e.g. higher efficiencies, faster fabrication times, and reduced costs, and, more rapid component iterations).
- The CAMIEM Activity only scratched the surface of what AM can offer toward new designs and manufacturing of electric motors.
- Designing a motor from scratch to fully take advantage of AM can offer more significant benefits.

CAMIEM - Top Level Summary

- CAMIEM addressed two key emerging areas within NASA:
 - 1. Advanced manufacturing => additive manufacturing.
 - 2. Electrified aircraft and urban air mobility.
- CAMIEM investigated the feasibility of additive manufacturing to enable new higher performance electric motor designs.
- CAMIEM resulted in the first demo of additively manufactured components and motor configurations.
 - New motors based off of SOA power dense motor that operates at 7500 rpm.
 - New design can provide about 2x torque, power, and power density.
- CAMIEM results show and Panel Review agrees feasibility achieved.

Outline

- CAMIEM intro and feasibility study
- System benefits
- Additively manufactured components
- Evaluation of the baseline and modified motors
- Summary/Conclusions

Wire Embedded Stator

Kapton coated Litz wire necessary to prevent dielectric breakdown and Eddy current

Ultrasonic embedding horn

20 kHz Ultrasonic system

Cartridge heated embedding demonstration

Demonstrations were made with 30 AWG Kapton™ coated litz wire on polycarbonate

Pressing process needed to further densify the stator

Final stator

PC substrate

- Challenges with feeding wire through ultrasonic horn of required 14 AWG wire.
- Challenges with overprinting polycarbonate onto embedded wire.
- AM of a wire embedded stator needs further development to be achievable.

24

Images credit: University of Texas @ El Paso

Sustainable Transportation Stakeholders

Large Single Isle Transports

25

Greased Lightning GL-10

X-57: Distributed Propulsion

Feasibility Assessment

Baseline Motor Testing for baseline performance Additive Manufacturing Processes and Advanced Components

Baseline Motor

Innovative Motor Design

Image credit: nscrypt

Feasibility Assessed and Benefits Determined

Aircraft Level System Studies

Additive Manufacturing Processes Being Applied to Motor Fabrication

Direct Write Printing

Selective Laser Sintering

video credit: University of Texas @ El Paso

Wire Embedding

Binder Jet 3D Printing

27

System studies looked at benefits from improved motor performance e.g. ~2-3 times increase in power density and 1-5% increase in efficiency.

- Single Aisle Long Haul Transports:
 - Sugar Volt
 - STARC-ABL

All Electric Aircraft

- X-57

- 3x Power Density increase in all motors would result in ~200lb savings
- Increase in range 6.6%

Multi-Material Stators

Wire embedded statorDirect printed stator

Silver Paste Selection and Print Optimization

Images credit nScrypt 3Dn-300

np Vendor Resistivity
N/A
7 – 10 (mΩ/sq/mil)
N/A
>7.5 x 10⁻ ⁸ Ωm
>5 x 10⁻8 Ωm
<5 (mΩ/sq/mil)

4-point probe method

Down-selected to a silver paste with highest electrical conductivity and temperature capability.

Direct Printed Silver Coils - High Current Test

Direct Printed Silver Coils - High Current Test

Direct Printed Stator - Concept A

Benefits of Concept A and B Designs

- Higher magnetic flux, torque, and motor constant (K_m).
- Higher temp. capability, 220°C and >250°C instead of 160°C for baseline stator.
- Higher torque with iron core.
- Direct printed silver coils with high fill.
- Significant reduction in costs and labor.

Direct Printed Stator - Concept B

- High temperature polymer plates machined to form pockets for iron wedges and channels for the coils.
- No coating required.
- Lighter weight and higher temp. than Concept A.
- Discrete iron wedges for lower magnet attraction and lower eddy current losses.
- All assembly sub-elements available.

Polymer sections form pockets and channels.

Channeled plate bottom surface with iron wedge integration.

33

Direct Printed Stator - Concept B 3D Printing with High Temp. Material

Additive Manufacturing from Extem[™] (Tg of 311°C) (left) and Ultem[™] 1010 (TG of 217°C) (right) FDM filament.

Low cost and rapidly manufactured sub-components may be possible with further advancements or alternate AM processes.

34

Xtreme challenge or impossible without AM

Rotor Component Design Iterations

Airfoil shaped spokes

Lattice in-fill within airfoil shaped spokes

Metallic Structural Components

 Additive Manufacturing of rotors, housings, and finned cooling rings

Cost Estimate Comparison

Rotorplate

Additive Manufacturing: CAMIEM-v2 design Total Manufacturing Time: 20 hrs

8 hrs to print. 12 hrs to post-process. Wasted Titanium : ~300 cm³

(un-usable powder loss & support volumes) Total Cost : ~\$1000 per plate

<u>CNC – LaunchPoint (baseline) design</u> **Total Manufacturing Time**: 20 hrs. at LPT **Wasted Titanium** : $(V_{Billet} - V_{Part})$: ~350 cm³ **Total Cost**: \$825.5 per plate

Housing

Additive Manufacturing: 4-leg design Total Manufacturing Time: ~18 hrs 15 hrs to print. 3 hrs to post-process. Wasted Aluminum : ~100 cm³ es) (un-usable powder loss & support volumes) Total Cost : ~\$300 per housing

<u>CNC – LaunchPoint (baseline) design</u> **Total Manufacturing Time**: 28 hrs at LPT **Wasted Aluminum** : $(V_{Billet} - V_{Part})$: ~1,350 cm³ **Total Cost**: \$310 per housing

Housing Design Evolution

21

Factor of 3-10 reduction in mass Factor of 1.25-2.7 lower fastener count Stiffness can be improved by ~2x eduction

38

16.3

Shaft Design Weight Reduction

Mass of baseline stainless shaft: 160.9 grams

Mass of LaRC titanium printed shaft: 76.1 grams

53 % Mass savings

Baseline and New Motor Configurations Testing

Prop Motor Testing Dynamometer Motor Testing

Testing of Motor Configurations

Prop motor testing:

- Baseline Motor
- Version 1 Motor: Structural parts with additively manufactured mod. 1 rotors and 4 legged housing.

Dynamometer motor testing:

- Baseline Motor

- Version 2 Motor: Structural parts – with additively manufactured mod. 2 rotors, 3 legged housing, and fined stator cooling ring.

Baseline Motor

CAMIEM V1. Motor

CAMIEM V2. Motor

CAMIEM-V1 and V2 Motor Configurations

Mass = 1833 g (7% less mass)

Mass = 1870 g (5% less mass) Total heat sink mass = 92 g

CAMIEM-

42

CAMIEM-

2

Motor Testing in Prop Test Stand - Testing Summary

- Baseline motor
 - Conducted a speed sweep up to 7500 RPM with prop to identify keep-out speeds
 - Conducted stair-step to collect power consumption, temperature, and estimate torque
- CAMIEM Version 1 motor
 - Following successful speed sweep without prop, conducted stairstep with prop up to 6000 RPM to compare to baseline data
- For each test, measured:
 - Stator temperature vs. speed at thermal equilibrium
 - Electrical power consumption (measured with 2-Wattmeter method)
 - Propeller speed

Power Input to Motor

The Version 1 motor consumed slightly more power than the baseline. Assuming power output is dependent on propeller only (same for each speed for both motors), at 6000 RPM the Ver. 1 was approximately 96.6% as efficient as the baseline.

Stator Temperature (Outer Diameter)

Demonstrates steady-state thermal behavior of the motors when spun with prop. Ambient temperature (measured by same thermocouple before power-up of motor) was 17°C for the baseline and 21°C for the Version 1

Dyno Testing of Ver. 2 Motor

CAMIEM Version 2 Motor

- Motor was installed, firmware updated, Lab View control updated, and shaft alignment checked.
- Motor was successfully spun at low rpm.
- As torque was applied to the motor, balance issues would cause a fault/stop. The motor needs to be professionally balanced. Limited testing was conducted.

Unable to get to higher RPMs due to balancing challenges.

Comparison for Baseline and CAMIEM Concepts A and B

Baseline and predicted CAMIEM motor performance metrics

• These predictions are for CAMIEM motors with all the final components for the structural parts (rotors, housing, finned cooling ring, and shaft) and concept A and B stators.

	•	
Base	eline	

		Baseline Motor	CAMIEM Concept A	CAMIEM Concept B	
	Maximum Power [W]	8330	13300	16300	
	Maximum Torque [N*m]	11	17	21	DHD
	Mass [kg]	2.0	2.5	2.3	U50
	Specific Power [kW/kg]	4.0	5.3	7.0	Concepts A and B (with relevant

The baseline and predicted CAMIEM motor performance metrics predict an increase in maximum power (x1.96), maximum torque (x1.96), and power density (x1.75).

vith relevant stator) ase in

Baseline Motor Tested in Dyno

Baseline motor

The power, motor efficiency, and motor temperature were determined to provide motor efficiency curves at various rpms (from 3000 to 7500 rpm) and torque settings (from 1 to 7 N m).

Baseline Motor Tests on the Dyno System When at LaunchPoint and at

NASA

Avg Motor Efficiency vs Avg Torque

Good agreement in motor efficiency for all rpms for both the LaunchPoint Technologies and GRC tests. Motor efficiencies mapped and corresponding motor power determined.

Experimental vs Computational Convection Coefficient vs Speed Results

Launchpoint "baseline" SoA - (no CUT)

Air Velocity

1/2 & 1/5th slice of the motor

max: 146 Pa

min: -230 Pa

max: 177 Pa

max: 39.9 m/s

max: 1.8E6 W/m^2 degC

50

40

30

min: 5.7E5 W/m^2

W/m²

×10⁶

0.85

0.7

Rotorplate "bottom" surface - bottom view

max: 39.9 m/s

max: 177 Pa

min: -230 Pa

convection coefficient (h) vs speed

Housing Design Iterations

Topologically Optimized for Propeller Condition: minimize mass & deflection

3-legged

4-legged

3-legged housing printed

4-legged housing printed

