LiON: Li-O₂ Batteries for NASA Electric Aircraft

NASA: <u>John Lawson</u> (ARC), Vadim Lvovich (GRC), Kurt Papathakis (AFRC)
External Partners: UC Berkeley, Stanford, Carnegie-Mellon, IBM Almaden, ARL, ORNL, Purdue, Colorado School of Mines, UC San Diego

NASA Strategic Plan for Green Aviation

Green Aviation Battery Requirements

Major requirement is: High Energy Density

Other requirements are rechargeable, safety, power, recharge time, cost, etc.

Electric aircraft have the most extreme requirements of any battery application ³

Li-Air is Unique Fit for Electric Aircraft

Li-Air has <u>highest</u> theoretical energy density. Very few alternatives.

Aircraft on-board oxygen systems can be leveraged for Li-Air batteries further mass reduction

Major Li-Air Challenges

Electrolyte **decomposition** limits energy density and rechargeability

SOA electrolytes are **flammable** Unacceptable for aircraft

Electrolytes are the limiting factor for Li-Air batteries to achieve:

- Practical high energy densities
- Rechargeability
- Safety

LiON Technical Thrust Areas

		State of the Art	Transformative
I	Computation	Empirical " <i>trial-and-</i> <i>error</i> " method	Predictive computation to accelerate development
II	New Materials	Commercial "off-the- shelf" materials	New material components designed and fabricated
111	Mechanisms	Decomposition mechanisms poorly understood	Mechanism informed "Electrolyte Design Rules"
IV	Electric Flight	Academic, laboratory studies	Electric aircraft flight systems integration

Multidisciplinary approach integrating computation, synthesis/fabrication and application engineering needed to make rapid progress for complex technologies such as batteries

- Multiscale Battery Modeling
- Material Evaluation: Electrolytes
- Material Design I: Electrolyte Stabilizers
- Material Design II: High Stability Electrolytes
- Material Design III: High Stability Cathodes
- Li-Air Pack for Electric Aviation

Multiscale Battery Modeling

SOA Li-Air research uses highly empirical "trial-and-error" approach

We used predictive modeling at multiple scales leveraging NASA supercomputing to accelerate development

NASA

- Multiscale Battery Modeling
- Material Evaluation: Electrolytes
- Material Design I: Electrolyte Stabilizers
- Material Design II: High Stability Electrolytes
- Material Design III: High Stability Cathodes
- Li-Air Pack for Electric Aviation

Amides and Ureas expected to perform better than SOA Ethers 10

Oxygen Recovery Efficiency

Efficiency determines cycle life: 100 cycles requires 99.9% efficiency

Decomposition Mechanisms Discovered

Mechanism identification suggests stability design rules: protect C=O bond

- Multiscale Battery Modeling
- Material Evaluation: Electrolytes
- Material Design I: Electrolyte Stabilizers
- Material Design II: High Stability Electrolytes
- Material Design III: High Stability Cathodes
- Li-Air Pack for Electric Aviation

Electrolyte Stabilizers

Stabilizers release locked up O₂ increasing O₂ recovery efficiency

Tunable Electrolyte Stabilizers

- Properties *tuned* by varying substituents, e.g. =O₂, -Br, -NR₂, etc.
- Computational screening to down select best candidates
- <u>2X</u> improvement in cycle life

- Multiscale Battery Modeling
- Material Evaluation: Electrolytes
- Material Design I: Electrolyte Stabilizers
- Material Design II: High Stability Electrolytes
- Material Design III: High Stability Cathodes
- Li-Air Pack for Electric Aviation

Going Inorganic: Molten Salt Electrolytes

- Persistent decomposition issues with organic electrolytes
- Inorganic molten salt electrolytes tried for improved stability

Molten Salt Electrolytes: Cycle Life

5X increase in cycle life with molten salt electrolytes vs SOA (DME)

Cell Death with Carbon Cathodes

<u>Parasitic</u> product Li_2CO_3 forms <u>insulating</u> layer on electrode killing the battery Thus, high stability electrolyte and high stability cathode required

- Multiscale Battery Modeling
- Material Evaluation: Electrolytes
- Material Design I: Electrolyte Stabilizers
- Material Design II: High Stability Electrolytes
- Material Design III: High Stability Cathodes
- Li-Air Pack for Electric Aviation

Computational Screening: Cathode Materials

High Throughput Workflow

Can we find cathode materials more stable than carbon?

Cathode Design

RF Sputtering-P50

Hydrothermal-P50

Hydrothermal-Ni Foam

- Many cathode materials (ZnO, ATO, ITO, etc) fabricated and tested
- Dramatic, *unexpected* parasitic processes observed batteries fail after *one* cycle
- Materials are promising but require further work

- Multiscale Battery Modeling
- Material Evaluation: Electrolytes
- Material Design I: Electrolyte Stabilizers
- Material Design II: High Stability Electrolytes
- Material Design III: High Stability Cathodes
- Li-Air Pack for Electric Aviation

Li-Air Battery Pack

5-cell, 12-Volt pack (300 grams)

Li-O₂ battery pack performed well for electric flight power profile test Further work to increase specific power (W/kg) and volumetric power (W/L)

Conclusions

- Material design approach identified a promising path to extended cycle life and higher practical energy densities for Li-O₂, involving alternative electrolytes, stabilizers, new cathodes, etc.
- Li-O₂ is viable for electric aircraft. Given enormous potential and very limited options (Li-O₂, Li-S, etc.), Li-O₂ should be on the table for future development.
- Li-O₂ is still fundamentally a low TRL technology and significant development required for it to be deployed in real applications.
- NASA can and should contribute to battery development for aircraft. Not being addressed by DOE or industry who are focused on battery cost and safety for automobiles
- Multidisciplinary team combining predictive computation, material synthesis/fabrication, battery engineering and application systems engineering (aircraft) essential to make progress