

Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging

Principle Investigators:

 P. M. Danehy, P. Tiemsin, C. Wohl, (NASA Langley Research Center)
 Additional Team Members:
 T. Lowe and R. Simpson (Va Tech)

Outline

- Current state of the art
- Technical approach
- The innovation: key points
- Impact of the innovation if it is eventually implemented
- Results of the seedling Phase I effort to date
- Distribution/Dissemination getting the word out
- Next steps

VARI

Current state of the art

 Most common measurements in wind tunnels are lift, drag, force and moment

Also: surface pressure, surface heat transfer

- Off body, most common techniques:
 - Schlieren, non-quantitative flow vis
 - Laser Doppler velocimetry (LDV), u v safe oint
 Particle Image Velocime Easy to use, turn key, safe oint
- Measurements <u>not</u> readily available:

In stream temperature, pressure, concentration

Need: Easy to use, turn key, safe

June 5-7, 2012

Why Use Particles?

- Other ways of measuring flow temperature (without seeding particles) exist, but have limitations preventing their use:
 - CARS: complicated, expensive, hard to set up, single point, 10 Hz
 - Rayleigh/Raman scattering: low signal, complicated to analyze, often single point, 10 Hz
 - PLIF: must seed flow with (usually) toxic gas, complicated, not very accurate, not sensitive enough, 10 Hz
 - Thermocouple: intrusive probe, single point, slow time response
- Few or no viable methods of measuring flow pressure exist
- Seeding dye-doped particles into a flow to measure *T*, *P*, and/or stream concentration should allow high s/n images
 - <u>Easy</u> because uses same or similar lasers, seeding systems, detectors as
 PIV/LDV → prefer imaging, non-toxic seeding
 - Performing in conjunction with PIV/LDV will measure <u>multi-parameters</u>

June 5-7, 2012

Temperature (only) Measurement Approach

Technical Approach: Measure P

NARI

Pressure (only) Measurement Approach using Lifetime Measurement (could also measure intensity of signal referenced to Mie)

Technical Approach: Combine w' LDV

Measure velocity from LDV, Pressure or Temperature from fluorescence

Technical Approach: Imaging Example

NARI

Combine T, P or concentration measurement with Particle Image Velocimetry (PIV)

Technical Approach: PSLs

How do we attach the dye?

Technical Approach: Dye Doping

Technical Approach: Dye Doping

NARI

- NARI
 - Have identified multiple measurement approaches with different dyes and different laser and detector configurations to measure:
 - Temperature, Pressure, Concentration
 - Pointwise (fast) or imaging (10 Hz) are possible
 - Alone or simultaneous with LDV, PIV
- PSLs have been synthesized with an array of dye materials with varying degrees of success
 - Dye influence on particle size and size distribution was observed and characterized
 - Different methods of incorporating dyes explored
- Temperature measurement in a flow experiment was demonstrated with (VT, POC: Todd Lowe)

Impact of Innovation if Incorporated

NARI

- Extend measurement technology beyond force/moment/wall and u, v velocity measurements
 - Temperature, Pressure, Concentration
- Impact on NASA ARMD Programs:
 - <u>SFW/ERA</u>: Jet noise studies, T, u, v and correlations
 - <u>Rotary Wing</u>: Pressure disturbances near blade tips
 - <u>High Speed</u>: Sonic Boom simultaneous P, u, v measurement
 - Measurements would provide unique data for validating CFD codes in a way not currently possible.
- Have identified potential customers within NASA, at other government agencies, academia and industry.

Phase I Results

NARI

• Dye materials evaluated

Dye	λ_{exc} , nm	λ_{em} , nm	PSL Incorporation	notes
Rhodamine B	575	595	Great, no leaching	Potentially carcinogenic
Fluorescein 548	512	526	Solvent dependent emission	Non-carcinogenic
Kiton Red 620	554	575	Leaching issues	Non-carcinogenic
Tetraphenyl Porphyrin	400	655	Inefficient incorporation	Tunable spectral properties

Other materials evaluted including fluorenone, 4-hydroxycoumarin, and Malachite Green.

NAR

Rhodamine B: Very strong Signal

- But slightly toxic
- Spectrum shifts in PSLs:
 Excitation and emission properties of Rhodamine dyes. are strongly dependent on matrix properties

	In Water	In PSLs
Excitation Maximum	546 nm	575 nm
Emission Maximum	585 nm	595 nm

• Decreases particle size ~10%

NAR

Phase I Results: FL548

• Fluorescein 548

- Showed good signal and temperature sensitivity in preliminary tests
- Shows Complex Emission/Quantum Yield Behavior
- Excitation at 532 nm.
- Emission intensity diminishes significantly and rapidly as solution evaporated.
- No detectable signal after the deposited PSLs were allowed to dry.

Kiton Red

- Less Toxic than Rh B
- Lower signal than Rh B
- Better for concentration meas.
- Dye Leaching out:

Once PSLs have settled, there is a clear distinction in color between the PSLs (white) and aqueous solution (red).

Phase | Results: KR

Wavelength, nm

Phase I Results: Leaching

NARI

Leaching Studies

Rhodamine B-doped PSLs

Kiton Red-doped PSLs

Even if Rh B is slightly toxic, if it is encapsulated in a polymer and won't leach out (in water), might it be acceptable for use?

Phase I Results: Porphyrin

Porphyrin

NARI

-Suitable for pressure measurement

-So far, low signal intensity

Complex Spectroscopic Properties:

- Coordination of an ion in the center of the macrocycle impacts:
 - Fluorescent emission
 - Quantum yield
 - Phosphorescent properties
 - Propensity for PSL incorporation?
- PSL synthesis uses MgSO₄ resulting in formation of a Mg-TPP adduct: Chlorophyll-like

Phase I Results: Concept Demo I

NARI

Va Tech demonstration used first measurement approach described above (Lowe, VT)

5 W

laser

PMT detection

(Lowe, VT)

- Split collected light into two channels: Mie (532 nm) & LIF (>600 nm)
- Added dry ice to flow to vary temperature; monitor with thermocouple

June 5-7, 2012

Phase I Results: Concept Demo III

- Mie scattering provided plenty of signal for velocimetry (though not demonstrated in this experiment).
- LIF channel provided sufficient signal for temperature determination (using Mie as reference)
- Temperature range in proposed experiments will be larger

June 5-7, 2012 NASA Aeronautics Mission Directorate FY11 Seedling Phase I Technical Seminar

(Lowe, VT)

Presentations:

NAR

- Occurred: SERMACS-2011
- Planned:
 - ACS, MRS, or Equivalent for materials synthesis
 - AIAA meeting with PSL seeding characterization results
- Publications:
 - Demonstration work at VT is nearing conference/journal publication quality results
 - PI's have strong track record of publishing in conferences and journals (see proposal appx)

Proposed Budget

Proposal Title: Fluorescence-Doped Particles for Simultaneous	From:_	07/01/12
Temperature and velocity imaging	То:	12/31/14
PI's Name: Paul Danehy		

NARI

NASA Center: LaRC

Assume	\$150K fc	or 1 Full	Time Fo	nuivalent	of 2080	hours pe	er NASA	Civil S	ervant.
ASSUINC	φισσιτία	n i i un		Jaivaicin	012000	nouis pe	JI NAOA		orvant.

Budget Request (\$K)	<u>FY12</u>	<u>FY13</u>	<u>FY14</u>	<u>TOTAL</u>
Civil Servant Salary: Paul Danehy PI (0.15 FTE)	6	22	6	34
Civil Servant Salary: Patsy Tiemsin Co-I (0.3 FTE)	11	45	11	67
Civil Servant Salary: Chris Wohl Co-I (0.2 FTE)	8	30	8	46
Total Civil Servant Travel		3	3	6
In-house Procurement - Materials	5	12	4	21
External Procurement - Virginia Tech	15	58	15	88
External Procurement - NIA (post-doc)	0	110	28	138
Budget Total	45	280	75	400

Cost Sharing, non-NASA Partner Provided Budget (\$K)	<u>FY12</u>	<u>FY13</u>	<u>FY14</u>	<u>TOTAL</u>
Virginia Tech	3	13.1	3	19.1
Total	3	13.1	3	19.1

- Continue to work with current/existing dyes
 - Rhodamine B: develop water seeder?
 - Fluorescein: try different variants
- Explore additional existing dyes
 - Literature search turned up good options to try
 - Additional literature search for existing dyes that are not commercially available
- Continue to develop measurement instrumentation for T, P, LDV or PIV demonstrations: apply to supersonic free jet

June 5-7, 2012

Future Plans II

Amphiphilic, chemically reactive dye

(Grk: both love; waterloving and fat-loving properties; surfactant)

- Design of a dye molecule to thermodynamically populate the interfacial region
- Functionalize the dye to chemically react with the styrene monomers
- Result:

NARI

- Lower Loading
- Reduced chance for leaching
- Greater sensitivity to environmental temperature, pressure, etc.

Conclusions

- Developing new generation of particle-based instrumentation for wind tunnels
 - Temperature, Pressure, Concentration measurements to complement velocity and conventional instrumentation
 - Can use much of same equipment as LDV/PIV
- Have successfully doped Rh B dye into particles
 - Demonstrated temperature measurement at VT
 - Rh B is slightly toxic
 - Can we find a way to safely use it?
 - Can we find other, safer options?
- Many options of other dyes to explore; may invent new dyes to meet requirements.

Phase I Results

Synthesis with MgSO₄

Synthesis with ZnSO₄

Phase I Results

Rhodamine-doped PSLs

Fluorescein & Kiton Reddoped PSL

Fluorescent particle past work

NAR

Literature Review:

- Found no past work using doped PSL for thermometry
- Kimura et al. (2006) used PSLs painted with PSP to measure pressure.
- Fluorescein 27 is very attractive for temperature sensitivity, on the order of 3.5%/°C (Dunand et al. 2010 and Sutton et al. 2008)
- Multiple dye techniques may offer significant advantages for improved sensitivity (Sutton et al. 2008).
- US Patent 4194877 claims invention of dye-doped PSLs.

2000

sensitive PSLs and results of Kimura et al. (2006).

Figure 8. PSBeads ratio of $I_{580 \text{ nm}}/I_{650 \text{ nm}}$ images excited by a 400 nm laser in 0%, 5%, 10%, 15%, 25% and 30% oxygen concentrations.

Filter-KR

640

Fig. 12 Relative emission spectra of FL27/RhB mixtures (a) and FL27/KR mixtures (b) in water for temperatures ranging from 22 to 78°C. Also shown are the "filter masks" used for evaluating the ratiometric technique