

ARMD Transformative Aeronautics Concepts Program

CONVERGENT AERONAUTICS SOLUTIONS PROJECT

CLAS-ACT: Conformal, Lightweight Antennas for Aeronautical Communications Technology

CAS Showcase November 13, 2019

UAS Need for BLOS* Coverage

Global Hawk/Northrop Grumman

*Beyond Line of Sight (BLOS)

UAS to benefit from BLOS

▲R Potential Missions From GT Study: ► Emergency Support

- Disaster relief
- Scientific
 - Package delivery

Problem with Wide Spread BLOS on UAS

Why phased arrays and why now

Traditional Reflector Antenna

- High performance
- Large volume
- Heavy Mechanical gimbal
- Fixed Radiation Pattern

Traditional Phased Array

- High performance
- Large mass/volume (7.5 lbs)
- Electronic steering
- Flexible Radiation Pattern
- High cost, long lead (custom IC's)

Phased Array with Silicon IC's

- High performance
- Low mass/volume (1 lb)
- Electronic steering
- Flexible Radiation Pattern
- Lower cost, lead time (COTS IC's)

Phased Arrays enable pattern re-optimization and are now a viable low SWaP solution

Building from Existing Aerogel Antennas

2015 Aerogel with rigid polymer backbone

New Aerogel with flexible polymer backbone

Aerogel is 77% lower in density vs conventional material

Rick Alena Sasha Weston Needa Lin

ANAMA

Andy Gutierrez Patricia Ortiz Ricardo Arteaga Kelly Snapp Thomas Matthews Mirela Isic Debra Randall

Fabrication Process

Interference Mitigation Lab Demonstration

GRC Near-Field Antenna Range

Azimut

Far Field Range Cut

Elevation (deg)

8

Antenna Hanger Testing

Flight Testing

N/A

N/A

CALIBRATED ALT. 6,532 ft GROUND SPEED 151 kts

Hanger/Flight Testing Results

Activity Summary

Developed new flexible aerogel material

silicon RF IC's

 Reduced mass
Increased RF performance
Reduced manufacturing challenges

Developed a low profile Ku-band phased array antenna

Demonstrated interference mitigation in antenna ranges

Developed in situ antenna characterization system

Concept to Flight in 2.5 Years

Integrated low profile antenna onto T-34C

UAM's BIG problem: Interference

UAM will Increase Users

• More Users = More Interference

Interference Lowers Reliability and Security

- Denial of service
- Increased Latency
- Spoofing

Interference mitigation enables reliable and secure communication

Performance on various structures

Low SWaP Phased Array antennas can enable BLOS operation of small UAS. This technology can be used to re optimized antenna performance for interference mitigation on a variety of current and future vehicles

