Novel Bonding Methodologies Toward the Attainment of Primary Bonded Aircraft Structure

Dr. John W. Connell, Advanced Materials and Processing Branch, NASA LaRC
Dr. Christopher J. Wohl, Advanced Materials and Processing Branch, NASA LaRC
Dr. Frank L. Palmieri, National Institute of Aerospace (NIA)
John W. Hopkins, Fabrication Technology Development Branch, NASA LaRC
Dr. Kay Y. Blohowiak, The Boeing Company
Dr. Marcus A. Belcher, The Boeing Company

ARMD Seedling Project
Phase I Project Review June 5, 2012
Innovation

• The innovation is in the creation of surface topography on the order of 5-10 microns deep into the surface of the Ti (Ti-6Al-4V alloy) while simultaneously changing the surface chemistry in a manner that enhances adhesive bonding.

• A Nd:YAG frequency tripled (355 nm) laser is used that is rapid, creates high precision topography in a very reproducible manner.

• The use of a laser to conduct the surface treatment can eliminate some chemical-dip steps involving high concentrations of carcinogenic chromium(VI), strong acids and bases, and negate the use of silicon carbide or aluminum oxide particles for grit blasting.
Technical Objective

• Develop an environmentally friendly surface treatment for adhesive bonding of titanium alloys (Ti) using a Nd:YAG laser to create the desired surface chemistry and topography.

• Develop a high precision, reproducible surface treatment process that is amenable to automation and scale-up that becomes part of an overall bonding process that leads to the certification of primary bonded structure on commercial aircraft
Technical Approach

• Prepare laser treated Ti panels
 – Investigate a range of laser parameters
 • Power, intensity, topographical pattern, feature dimensions
 – Characterize surface topography and chemistry
 • Ensure that the treatment maintains or improves properties relative to state-of-the-art grit blasting (i.e., is not detrimental in any way)

• Fabricate laser treated Ti panels, fabricate adhesive specimens and conduct adhesive testing
 – A test matrix was developed to investigate what steps in the state-of-the-art dip process could be eliminated
 – Approximately 50 Ti panels (8 in x 6 in) were surface treated, fabricated into adhesive specimens and are undergoing testing
 – Multiple single lap shear specimens (SLS) prepared and tested
Impact if Implemented

- The SOA treatment process for Ti is expensive to maintain, monitor and utilize in a production environment, and the chemicals involved are potentially hazardous to workers and the environment.

- The implementation of this process would reduce overall costs, eliminate toxic waste, and enable an automated surface treatment and bonding process.

- The precision and control associated with the automated surface treatment and bonding process would be part of a larger process leading to certification of adhesively bonded primary structure for commercial aircraft.
Distribution/Dissemination

- Invention disclosures
- Palmieri, Frank P.; Wohl, Christopher J.; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Connell, John W., “Laser Surface Preparation of Titanium Adherends”: Green Processing for Improved Bond Durability”, 57th International SAMPE Symposium and Exhibition, Baltimore, MD, May 21-24, 2012.
- Palmieri, Frank P.; Wohl, Christopher J.; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Connell, John W., “Laser Surface Preparation of Titanium Adherends, will be submitted to ACS Journal of Applied Materials and Interfaces in June/July 2012.
- First Place NASA Langley Engineering Directorate Innovation Award, Sept. 2011.
Accomplishments

Finishing a 2" x 3" field
Accomplishments

Duty Cycle (D) = 0.001”/pitch x 100%
Accomplishments

• Milestone—demonstrate that laser surface treatment did not introduce any undesirable microstructure (α-case).

• The α-case layer is caused by oxygen diffusion into the surface and in an α/β alloy like Ti-6Al-4V results in hardening causing embrittlement.
• Microscopic analysis and nanoindentation experiments were conducted on laser etched coupons to determine if any α-case was observed.
• No indication of α-case formation due to the laser ablation surface treatment process. Although laser ablation temperatures are high enough to form α-case, the duration of each pulse is much too short (nanoseconds) for the alloy transformation to occur.
Accomplishments Microhardness Profile

- Microhardness characterization results correlate with SEM data
Accomplishments

- **Milestone** - determine the surface chemistry that results from the laser ablation process.
 - Certain chemical species (highly oxidized hydroxyl structures) on the Ti alloy surface are detrimental to the formation of robust and durable adhesive bonds.

- **No detrimental surface chemistries were detected by x-ray photoelectron spectroscopy**
 - This was the subject of a paper at the SAMPE Spring Conference in Baltimore Md in May 2012 (Palmieri, Frank P.; Wohl, Christopher J.; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Connell, John W., “Laser Surface Preparation of Titanium Adherends: Green Processing for Improved Bond Durability”, 57th International SAMPE Symposium and Exhibition, Baltimore, MD, May 21-24, 2012).
Accomplishments XPS Results

- Al and Ti decrease with ablation
- O and V increase with ablation
 - Oxidation
 - Removal of surface material
- Higher power ablation provides desired failure mode
Accomplishments

Surface Oxide Concentration Correlates with SLS Failure Mode

- Laser ablation removes TiO$_2$ at low power
- Fresh oxide formed only at higher power
- Similar trend observed with Al and Al$_2$O$_3$
- Oxidized hydroxyl species are removed at low power
Accomplishments

• An unplanned development was a novel fluorescence visualization inspection technique to aid in the near quantification of the failure mode.

• On the left is a visible light image of a failed lap-shear specimen showing mostly adhesive failure. On the right is a fluorescence image of the same specimen with clearly visible adhesive residues.

• Software is used to count pixels to quantify fluorescent area.
Accomplishments

- During the Phase I effort, a Space Act Agreement with Boeing (SAA1-1155 Annex 2) was finalized which includes collaborative research on laser-based surface treatments for both Ti and carbon fiber reinforced composites.
- A comprehensive test matrix was subsequently developed and is being executed.
Accomplishments

• A significant milestone was the results from wedge testing of laser ablated Ti adherends.
 – The adherends were treated with the laser ablation process as received to remove mill scale and prepare the surface for bonding. Sub-sets of the ablated adherends were treated with a sol-gel coating and or an adhesive primer which are used commonly in assembly of aircraft joints.

• The industry standard of less than 0.25 inch of crack extension with predominantly cohesive failure mode during the first 24 hours of exposure to 140°F and 99% RH was achieved.

Fractured laser treated Ti-6Al-4V wedge crack specimens
Accomplishments

- Laser surface treatments were performed on SLS specimens and compared to control samples that were polished.
 - The results indicate that the laser treated specimens performed better than the control specimens.
Next Steps (Phase II Proposal)

- Initiate fatigue testing on laser treated Ti coupons, continue characterization and analysis associated with test matrix
- Conduct fatigue test, complete test matrix and associated analyses
- Initiate Ti/CFRP surface treatments, characterize Ti fatigue specimens and analyze fatigue test results
- Fabricate Ti/CFRP specimens and conduct mechanical tests
- Complete characterization and analysis of all test results
- Analysis of all characterization and test results provided in a final report, recommendations for any future work needed that may lead to ARMD directed funding, or to next steps required to implement the technology into production processes
- Boeing to commit $100K in-kind funding if the project advances to Phase II
Fatigue Test Details

- ASTM E466-07: Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials

- Fatigue test matrix @ 15 Hz cyclic loading
 - Test: parent material, SOA process, and laser ablation surface treatment
 - Load range: 700 – 1000 MPa
 - Expected cycle range: 10^4 to $2 	imes 10^7$
 - Test duration: 5 months on two test stands (estimated cost $60-85K$)
Composite Ablation & Bonding

- Ablation of T800H/3900-2 composites previously performed for bonding applications
- Single-lap joints have been prepared with ablated composite panels and tested for bond durability in hot/wet environments
- Our team already has significant experience with laser ablation of composites, several publications and talks presented at technical conferences
Summary of Phase I Results

- The potential formation of α-case that was initially raised by metallurgists has been addressed at the micron scale. Mechanical fatigue testing is needed in the Phase II to demonstrate durability.
- XPS characterization indicated that detrimental hydroxyl species are removed by laser ablation, mil scale is efficiently stripped, and fresh (beneficial) oxides are readily formed at higher laser ablation energies.
- XPS has established that no detrimental chemistry is being produced by the laser treatment.
- A technique was developed to aid in failure mode analysis.
- Adhesion studies conducted with two test methods and two adhesives have indicated that a stable interface is formed.
- 1 patent application filed, 2 invention disclosures submitted, 1 conference presentation given, 1 journal article nearly complete, NASA Langley Engineering Directorate Innovation Award (9/2011).
- Boeing’s (partner and end user) interest in the technology was validated by their commitment ($50k in-kind).
Appendix

Backup Charts
Motivation for Bonding

- Use of bonded joints is increasing.
 - Titanium ~ 15%
 - Composites ~ 50%
- Removing mechanical fasteners
 - Reduces weight and manufacturing cost
 - Improves design flexibility

Boeing 787 and Airbus A350

Images publicly available on the web.
Chemical Surface Preparation

- Processes are polluting, dangerous, and difficult to automate & monitor
 - Acid etching: mill scale removal
 - Pasa-Jell treatment: contains HF

Cleaner, Cheaper, Safer is Needed!
Mechanical Surface Preparation

Grit blast and mechanical abrasion creates non-uniform surfaces, leaves loose debris, generates waste.
Laser Ablation Surface Preparation

- Creates surface patterns on plastics, metals, ceramics and composites on the micron scale with a high degree of precision
- Controls roughness and surface chemistry
- Rapid, reproducible, scalable and practical for production environment

Pattern concepts developed using CAD software

Example: Checkerboard pattern.

Laser Ablation Processing

Pulsed Laser Beam
Volatilized/Ejected Material
- Photochemical
- Photophysical
- Photothermal

Substrate
System Specifications:
Laser Type – Frequency tripled Nd:YAG
\[\lambda = 355 \text{ nm} \]
Nominal Power = 7 W
Frequency – 10 – 100 kHz
Beam Width ~ 25 µm
Speed – Up to 50 in/s

Waste:
Aerosols and dust are minimal and are collected in an air filter.
Test Plan

- Surface preparation by *laser ablation* and *polishing*
 - Roughness by interferometer microscope
 - Chemistry by X-ray Photoelectron Spectroscopy (XPS)

- Single-lap shear (SLS) tests
 - Apparent shear strength and failure mode
 - Ageing by immersion in boiling water
 - 3 days

- Wedge tests
 - Failure mode
 - Crack length
Metallographic cross-section and hardness depth profiles by indentation were examined for signs of an α-case formation.
Microhardness Profile and X-Section Images

Vickers Hardness Profile

- 1mm from interface (ablated)
- 3mm from interface (ablated)
- 12mm from interface (ablated)
- 1mm from interface (unablated)

Knoop Hardness Profile

- No α-case!

Metallographic x-sections

α-case

Preparation of Adhesive Bonds

Single-lap Shear Testing
Modification of ASTM D1002-10
Titanium adherends (Ti-6Al-4V alloy)
Specimens: 1” wide, 0.063” thick, ½” overlap

Wedge Testing
ASTM D3762-03
Ti alloy
6” x 8” x 0.125” adherends
1” x 8” x ¼” specimens
Ageing: 60 °C and >95% RH

Bonding Method
Heated Press
Open air
1hr @ 700 °F (371 °C)
Active cooling
Effect of Pitch on Lap Shear

For pitch ≤ 50 µm:
- Failure mode is predominantly cohesive
- Apparent shear strength is a maximum

Roughness is a maximum at about 25 µm pitch.

Immersion in boiling water for 72 hrs
- Causes ~35% loss in properties
- Does not affect failure mode significantly.

Smaller Pitch = Apparent Shear Strength Increases
Adhesive Failure Decreases
At an ablation power ≥ 600 mW
- Failure mode is predominantly cohesive
- Apparent shear strength approaches maximum

Roughness increased only at higher ablation powers.

Immersion in boiling water for 72 hrs
- Causes $\sim 25\%$ loss in properties
- Does not affect failure mode significantly.

Effect of Power on Lap Shear

- Higher Power = **Apparent Shear Strength Increases**
- **Adhesive Failure Decreases**
Lap Shear Preparation

PETI-5 adhesive tape preparation

Lay-up in bonding jig

Separated specimens

Bonding in heated press