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Innovation
• The innovation is in the creation of surface topography on the 

order of 5-10 microns deep into the surface of the Ti (Ti-6Al-
4V alloy) while simultaneously changing the surface 
chemistry in a manner that enhances adhesive bonding.

• A Nd:YAG frequency tripled (355 nm) laser is used that is 
rapid, creates high precision topography in a very 
reproducible manner.

• The use of a laser to conduct the surface treatment can 
eliminate some chemical-dip steps involving high 
concentrations of carcinogenic chromium(VI), strong acids 
and bases, and negate the use of silicon carbide or aluminum 
oxide particles for grit blasting.
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Technical Objective

• Develop an environmentally friendly surface 
treatment for adhesive bonding of titanium 
alloys (Ti) using a Nd:YAG laser to create the 
desired surface chemistry and topography.

• Develop a high precision, reproducible 
surface treatment process that is amenable 
to automation and scale-up that becomes 
part of an overall bonding process that leads 
to the certification of primary bonded 
structure on commercial aircraft
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Technical Approach
• Prepare laser treated Ti panels

– Investigate a range of laser parameters
• Power, intensity, topographical pattern, feature dimensions

– Characterize surface topography and chemistry
• Ensure that the treatment maintains or improves properties relative to state-of-

the-art grit blasting (i.e., is not detrimental in any way)

• Fabricate laser treated Ti panels, fabricate adhesive 
specimens and conduct adhesive testing
– A test matrix was developed to investigate what steps in the state-of-

the-art dip process could be eliminated
– Approximately 50 Ti panels (8 in x 6 in) were surface treated, 

fabricated into adhesive specimens and are undergoing testing
– Multiple single lap shear specimens (SLS) prepared and tested
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Impact if Implemented
• The SOA treatment process for Ti is expensive to maintain, 

monitor and utilize in a production environment, and the 
chemicals involved are potentially hazardous to workers and 
the environment.

• The implementation of this process would reduce overall 
costs, eliminate toxic waste, and enable an automated 
surface treatment and bonding process.

• The precision and control associated with the automated 
surface treatment and bonding process would be part of a 
larger process leading to certification of adhesively bonded 
primary structure for commercial aircraft.
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Distribution/Dissemination
• U.S. Patent Application 20110086204 “Modification of Surface Energy Via 

Direct Laser Ablative Surface Patterning” April 14, 2011.
• Invention disclosures
• Palmieri, Frank P.; Wohl, Christopher J.; Morales, Guillermo; Williams, 

Thomas; Hicks, Robert; Connell, John W., “Laser Surface Preparation of 
Titanium Adherends”: Green Processing for Improved Bond Durability”,  
57th International SAMPE Symposium and Exhibition, Baltimore, MD, May 
21-24, 2012.

• Palmieri, Frank P.; Wohl, Christopher J.; Morales, Guillermo; Williams, 
Thomas; Hicks, Robert; Connell, John W., “Laser Surface Preparation of 
Titanium Adherends, will be submitted to ACS Journal of Applied Materials 
and Interfaces in June/July 2012.

• First Place NASA Langley Engineering Directorate Innovation Award, Sept. 
2011.
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Accomplishments
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Accomplishments
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Accomplishments
• Milestone-demonstrate that laser surface treatment did not 

introduce any undesirable microstructure (α-case).
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• The α-case layer is caused by oxygen diffusion into the surface and in an α/β alloy like 
Ti-6Al-4V results in hardening causing embrittlement.

• Microscopic analysis and nanoindentation experiments were conducted on laser etched 
coupons to determine if any α-case was observed.

• No indication of α-case formation due to the laser ablation surface treatment process. 
Although laser ablation temperatures are high enough to form α-case, the duration of 
each pulse is much too short (nanoseconds) for the alloy transformation to occur.

Representative 
sample

Laser treated 
sample
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Accomplishments
• Milestone -determine the surface chemistry that results from the 

laser ablation process.
– Certain chemical species (highly oxidized hydroxyl structures) on the Ti alloy 

surface are detrimental to the formation of robust and durable adhesive bonds.

• No detrimental surface chemistries were detected by x-ray 
photoelectron spectroscopy
– This was the subject of a paper at the SAMPE Spring Conference in Baltimore 

Md in May 2012 (Palmieri, Frank P.; Wohl, Christopher J.; Morales, Guillermo; 
Williams, Thomas; Hicks, Robert; Connell, John W., “Laser Surface Preparation 
of Titanium Adherends: Green Processing for Improved Bond Durability”,  57th

International SAMPE Symposium and Exhibition, Baltimore, MD, May 21-24, 
2012).
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Accomplishments  XPS Results

• Al and Ti decrease with 
ablation

• O and V increase with 
ablation
– Oxidation
– Removal of surface 

material
• Higher power ablation 

provides desired failure mode

Peak 
Identification
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Surface Oxide Concentration 
Correlates with SLS Failure Mode

• Laser ablation removes TiO2 at 
low power

• Fresh oxide formed only at 
higher power

• Similar trend observed with Al 
and Al2O3

• Oxidized hydroxyl species are 
removed at low power

Accomplishments
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Accomplishments
• An unplanned development was a novel fluorescence 

visualization inspection technique to aid in the near 
quantification of the failure mode. 
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• On the left is a visible light image of a failed lap-shear specimen showing mostly 
adhesive failure. On the right is a fluorescence image of the same specimen 
with clearly visible adhesive residues.

• Software is used to count pixels to quantify fluorescent area.
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Accomplishments
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• During the Phase I effort, a Space Act Agreement with Boeing (SAA1-1155 Annex 2) was 
finalized which includes collaborative research on laser-based surface treatments for both Ti 
and carbon fiber reinforced composites.  

• A comprehensive test matrix was subsequently developed and is being executed.
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Accomplishments
• A significant milestone was the results from wedge testing of laser ablated Ti 

adherends.  
– The adherends were treated with the laser ablation process as received to remove mill scale and 

prepare the surface for bonding.  Sub-sets of the ablated adherends were treated with a sol-gel 
coating and or an adhesive primer which are used commonly in assembly of aircraft joints.

• The industry standard of less than 0.25 inch of crack extension with predominantly 
cohesive failure mode during the first 24 hours of exposure to 140oF and 99% RH 
was achieved.
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Fractured laser treated Ti-6Al-4V wedge crack specimens
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Accomplishments
• Laser surface treatments were performed on SLS specimens and compared to 

control samples that were polished. 
– The results indicate that the laser treated specimens performed better than 

the control specimens.
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Next Steps (Phase II Proposal)

• Initiate fatigue testing on laser treated Ti coupons, continue 
characterization and analysis associated with test matrix

• Conduct fatigue test, complete test matrix and associated analyses
• Initiate Ti/CFRP surface treatments, characterize Ti fatigue specimens and 

analyze fatigue test results 
• Fabricate Ti/CFRP specimens and conduct mechanical tests
• Complete characterization and analysis of all test results
• Analysis of all characterization and test results provided in a final report, 

recommendations for any future work needed that may lead to ARMD 
directed funding, or to next steps required to implement the technology 
into production processes

• Boeing to commit $100K in-kind funding if the project advances to Phase II
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Fatigue Test Details

• ASTM E466-07: Conducting Force Controlled Constant 
Amplitude Axial Fatigue Tests of Metallic Materials

• Fatigue test matrix @ 15 Hz cyclic loading
– Test:  parent material, SOA process, and laser ablation surface treatment
– Load range: 700 – 1000 MPa
– Expected cycle range: 104 to 2x107

– Test duration: 5 months on two test stands (estimated cost $60-85K)
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Blanket Ablation (confocal) Tilt view of x-section (SEM)Line Ends (confocal)

Composite Ablation & Bonding
• Ablation of T800H/3900-2 composites previously performed for 

bonding applications
• Single-lap joints have been prepared with ablated composite 

panels and tested for bond durability in hot/wet environments
• Our team already has significant experience with laser ablation 

of composites, several publications and talks presented at 
technical conferences
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Summary of Phase I Results

• The potential formation of α-case that was initially raised by metallurgists has 
been addressed at the micron scale. Mechanical fatigue testing is needed in the 
Phase II to demonstrate durability.  

• XPS characterization indicated that detrimental hydroxyl species are removed by 
laser ablation, mil scale is efficiently stripped, and fresh (beneficial) oxides are 
readily formed at higher laser ablation energies. 

• XPS has established that no detrimental chemistry is being produced by the laser 
treatment.

• A technique was developed to aid in failure mode analysis.
• Adhesion studies  conducted with two test methods and two adhesives have 

indicated that a stable interface is formed.
• 1 patent application filed, 2 invention disclosures submitted, 1 conference 

presentation given, 1 journal article nearly complete, NASA Langley Engineering 
Directorate Innovation Award (9/2011).

• Boeing’s (partner and end user) interest in the technology was validated by their 
commitment ($50k in-kind).

June 5-7, 2012 NASA Aeronautics Mission Directorate FY11 Seedling Phase I Technical Seminar 21



NARI

Appendix

Backup Charts

June 5-7, 2012 NASA Aeronautics Mission Directorate FY11 Seedling Phase I Technical Seminar 22



NARI

Motivation for Bonding

• Use of bonded joints is 
increasing.
– Titanium ~ 15%
– Composites ~ 50%

• Removing mechanical 
fasteners
– Reduces weight and 

manufacturing cost
– Improves design flexibility

Boeing 787 and Airbus A350

Images publicly available on the web.
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Chemical Surface Preparation

• Processes are polluting, dangerous, and 
difficult to automate & monitor
– Acid etching: mill scale removal
– Pasa-Jell treatment: contains HF

Corrosive/Caustic 
Stripping Processes 

Cleaner, Cheaper, Safer is Needed! 
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Mechanical Surface Preparation

Sanded Surface (220 grit SiC)

Grit blast and mechanical abrasion creates non-
uniform surfaces, leaves loose debris, generates waste

Grit Blasted Surface(220 grit SiC)
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Laser Ablation Surface Preparation

• Creates surface patterns on plastics, metals, ceramics and 
composites on the micron scale with a high degree of precision

• Controls roughness and surface chemistry
• Rapid, reproducible, scalable and practical for production 

environment

Example: Checker 
board pattern.

Pattern concepts developed 
using CAD software Laser Ablation Processing
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Laser Ablation Tooling and Production
Lab-scale, laser pattern generator

Inset: Ablation of Ti-6Al-4V specimen

Cross-hatch in Ti-6Al-4V alloy (Optical)

50 µm

Lines and cross-hatch (Confocal)

System Specifications:
Laser Type – Frequency tripled Nd:YAG

λ = 355 nm 
Nominal Power = 7 W
Frequency – 10 – 100 kHz
Beam Width ~ 25 µm
Speed – Up to 50 in/s

Waste:
Aerosols and dust are minimal and are collected in 
an air filter.
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Test Plan
• Surface preparation by laser ablation and polishing

– Roughness by interferometer microscope
– Chemistry by X-ray Photoelectron Spectroscopy (XPS)

• Single-lap shear (SLS) tests
– Apparent shear strength and failure mode 
– Ageing by immersion in boiling water

• 3 days

• Wedge tests
– Failure mode
– Crack length
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Metallographic cross-section and hardness depth profiles by 
indentation were examined for signs of an α-case

Specimen to Test for α–case Formation

Laser ablated unablated

Interface

X

Y

Z
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Preparation of Adhesive Bonds
Single-lap Shear Testing
Modification of ASTM D1002-10
Titanium adherends (Ti-6Al-4V alloy)
Specimens: 1” wide, 0.063” thick, ½” overlap

Wedge Testing
ASTM D3762-03
Ti alloy
6” x 8” x 0.125” adherends
1” x 8” x ¼” specimens
Ageing: 60 °C and >95% RH

Bonding Method
Heated Press
Open air
1hr @ 700 °F (371 °C)
Active cooling
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Effect of Pitch on Lap Shear

As Fabricated

Apparent Shear Strength Increases 
Adhesive Failure Decreases

For pitch ≤ 50 µm:
•Failure mode is predominantly cohesive
•Apparent shear strength is a maximum

Roughness is a maximum at about 25 
µm pitch.

Immersion in boiling water for 72 hrs
•Causes ~35% loss in properties
•Does not affect failure mode 
significantly.

Smaller Pitch= 

Power = 1 W
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As Fabricated

At an ablation power ≥ 600 mW
•Failure mode is predominantly cohesive
•Apparent shear strength approaches 
maximum

Roughness increased only at higher 
ablation powers.

Immersion in boiling water for 72 hrs
•Causes ~25% loss in properties
•Does not affect failure mode 
significantly.

Effect of Power on Lap Shear

Apparent Shear Strength Increases
Adhesive Failure DecreasesHigher Power = 

Pitch = 50 µm
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Lap Shear Preparation

PETI-5 adhesive 
tape preparation

Separated specimens

Lay-up in bonding jig

Bonding in heated press
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