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ABSTRACT
The current emphasis on increasing aeronautical efficiency

is leading the way to a new class of lighter more flexible air-
plane materials and structures, which unfortunately can result in
aeroelastic instabilities.

To effectively control the wings deformation and shape, ap-
propriate modeling is necessary. Wings are often modeled as
cantilever beams using finite element analysis. The drawback
of this approach is that large aeroelastic models cannot be used
for embedded controllers. Therefore, to effectively control wings
shape, a simple, stable and fast equivalent predictive model that
can capture the physical problem and could be used for in-flight
control is required.

The current paper proposes a Discrete Time Finite Element
Transfer Matrix (DT-FETMM) model beam deformation and use
it to design a regulator. The advantage of the proposed approach
over existing methods is that the proposed controller could be
designed to suppress a larger number of vibration modes within
the fidelity of the selected time step. We will extend the discrete

∗Address all correspondence to this author

time transfer matrix method to finite element models and present
the decentralized models and controllers for structural control.

Nomenclature
An = Acceleration integration scaling value for the nth node
Bn = Acceleration integration constant for the nth node
Ci j = Galerkin finite element damping matrix sub-block
Dn = Velocity integration constant for the nth node
En = Velocity integration scaling value for the nth node
fn = Control input force at nth node
Fn = Forward propagation matrix of the right force for the nth node
Hn = Reverse propagation matrix of the left force for the nth node
Jn = Reverse propagation matrix for the nth node
Ki j = Galerkin finite element elastic matrix sub-block
Mi j = Galerkin finite element mass matrix sub-block
Pn = Forward propagation matrix for the nth node
Qn = Transfer matrix from left boundary condition to nth node
Tn = Transfer matrix from right boundary condition to nth node
vn = Propagation vector
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xn = nth node position states
ẋn = nth node velocity states
ẍn = nth node acceleration states
τn = Internal forces at the nth node for either left or right side

1 Introduction
Aerodynamic efficiency is one of the most sought after goals

for aerodynamic design. It has been shown that active in-flight
aeroelastic shape control of wing twist and deflection at local
wing sections can improve overall aerodynamic efficiency [1–3].
Two recent NASA studies to realize in-flight aeroelastic wing
shape control are the Variable Camber-Continuous Trailing Edge
Flap (VCCTEF) and Distributed Electric Propulsion (DEP) con-
cepts. The VCCTEF strategy divides a trailing edge into many
flap sections, each of which can be individually controlled sub-
ject to the constraints of an interstitial elastomeric interpolating
surface. Chord-wise and span-wise adaptive wing shaping for
various flight scenarios can be achieved in this manner. DEP pro-
poses to accomplish similar shape morphing modes, but with dif-
ferential control of spatially distributed electric propulsion sys-
tems.

A significant number of direct actuation methods proposed
in literature focus either on developing a variable camber tech-
niques [4] or on twisting the wing to morph in a suitable shape.
For example, Majii et al. [5, 6] proposed a variable twist wing
that had three sections that were all capable of independent vari-
able twist actuation. The advantage of this approach is that the
slope of lift drag line for a given angle of attack could be con-
trolled by the set point of the other twist positions. Vos et al. [7]
addressed the issue of the skin by using more traditional wind
box and a carbon-fiber-reinforced polymer. They also showed
that the lift, drag, and lift drag ratio for given angle of attacks
could be controlled with the amount of twist.

The current paper proposes a new approach for the mod-
eling and control of cellular based composite materials. [8] We
view cellular based composite materials as an enabling technol-
ogy for wing shaping control and are therefore critical to de-
velop techniques to model and control them. Cellular composite
materials are individual components that can be be incremen-
tally assembled, modified, and repaired without requiring cus-
tom tooling, for high-performance structures. Fiber composites
have been widely used to construct truss cores [9] and structural
frames [10]. These have all entailed the development of pro-
cesses to continuously wind the fibers through a structure, and
subsequently cure a resin matrix around them. Instead, the ap-
proach taken with the cellular composite materials, uses parts
with carbon-fiber beams and loops that are reversibly linked. The
design of the reversible linked components is very important step
to achieving the stated goals by allowing the global material char-
acteristics to be governed by the way in which the components
are assembled. This provides the necessary design fidelity to

FIGURE 1. Lattice-based composite cellular wing structure.

achieve the shape morphing wing, while the components once
assemble do act as continuous mediums. [11]

Modeling of high dimensional lattice structures using con-
ventional FEM approach can be a challenge, mainly because it
is difficult to analyze and visualize the integrated lattice struc-
ture in real-time. In this paper, we propose to use the concept
of discrete-time finite element transfer matrix method (DT-FE-
TMM) to model and analyze large structural systems. The wing
structure shown in Figure 1 has a dense wing box and shows
the general structure that allows the uses of global finite element.
The damping incorporates extremely low internal damping of the
carbon fiber and the friction due to the reversible attachment of
the parts. The basic concept behind this approach was inspired by
the work of Tan et al. [12], where the notion of modified transfer
matrix method (M-TMM) approach was developed by utilizing
the dynamic stiffness matrix of finite element. The primary goal
there was to reduce the computational efforts involved in struc-
tural analysis. In this paper, in addition to the incorporation of
the notion of M-TMM, we also utilize the numerical integration
approach proposed in Kumar and Sankar [13] and develop a re-
duced order discrete-time state-space model that is best suited
for control synthesis. An optimal decentralized LQR controller
is then designed for the reduced order model, and it is demon-
strated that the overall structural system performance is compara-
ble with that of the optimal LQR controller with full order model.
In previous work Cramer et.al used a similar approach with the
lumped-mass system that showed very promising results. [14]

Work has been done previously using the DT-TMM method
as a means of control for flexible robots [15,16] as well as multi-
body systems. [17–19] These works have shown that the trans-
fer matrix method can be used to design and create efficient
controllers, though to the authors knowledge none of them has
specifically addressed the use of transfer matrix method for struc-
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tural control.
This paper is organized as follows. Section 2 introduces

the mathematical modeling techniques used in the paper: the
discrete-time transfer matrix method, the reduced-order model
as well as the proposed transfer matrix method. Section 3 fo-
cuses on developing and formulating the decentralized controls,
and Section 4 contains numerical simulations and discussions.
Concluding remarks are made in Section 5.

2 Modeling
The general discrete time transfer matrix method (DT-

TMM) is a discrete time extension of the statistical mechanics
transfer matrix method. DT-TMM uses the repetitive nature of
adjoining subsystems to determine the contribution of each node.
From that point there is a simple and natural expansion detailing
the importance of each nodes contributions to the overall system.
The adaptation of this method to work with the Galerkin finite
element method (GFEM) that will be shown in this section needs
to be derived from the basic equation of motion for the GFEM

shown in equation 1,

MẌ +CẊ +KX = F (1)

where M, C, K are the mass, structural damping, stiffness ma-
trices respectively, the sub-matrix of these general matrices can
be seen in Appendix A. Two elements are the minimum set of
elements that can be fully represented for this method. The min-
imum set of elements require three nodes, each of which repre-
sent a set of states. The minimum set of elements can be seen in
equation 3.

Mn,nẍn(ti) = τ
R
n (ti)− τ

L
n (ti)− fn (2)

The equation of state of the node of interest (n) can be seen in
equation 2. Where τR

n (ti) represents the contributions of the in-
ternal forces from the elements to the right at time ti, which is
the time at the ith time step and τL

n (ti) represents the same for the
left side. fn is the external force contribution.

Mn−1,n−1 Mn−1,n 0
Mn,n−1 Mn,n Mn,n+1

0 Mn+1,n Mn+1,n+1

 Ẍ +

Cn−1,n−1 Cn−1,n 0
Cn,n−1 Cn,n Cn,n+1

Cn+1,n Cn+1,n+1

 Ẋ +

Kn−1,n−1 Kn−1,n 0
Kn,n−1 Kn,n Kn,n+1

0 Kn+1,n Kn+1,n+1

X +

 fn−1
fn

fn+1

=

Fn−1
Fn

Fn+1

 (3)

Using equation 3 together with the configuration of equation
2 τL

n (ti) and τR
n (ti) can be determined as shown below in equa-

tions 4 and 5.

τ
L
n = Mn,n−1ẍn−1 +

[
Cn,n−1 Cn,n

][ẋn−1
ẋn

]
+
[
Kn,n−1 Kn,n

][xn−1
xn

]
(4)

τ
R
n = Mn,n+1ẍn+1 +

[
Cn,n Cn,n+1

][ ẋn
ẋn+1

]
+
[
Kn,n Kn,n+1

][ xn
xn+1

]
(5)

Which by using the linear integral representation in equation 6
we can convert it into a discrete time system, show in 7 and the
discrete time left and right forces are shown in equations 8 and
9, respectively.

ẍ = An(ti)xn(ti)+Bn(ti)
ẋ = Dn(ti)xn(ti)+En(ti)

(6)

where An and Dn are typically constants related to the time step
and Bn and En contain the previous time steps information.

Mn,n[An(ti)xn(ti)+Bn(ti)] = τ
R
n (ti)− τ

L
n (ti)+ fn (7)

τ
L
n = Mn,n−1[An−1(ti)xn−1(ti)+Bn−1(ti)]+

[
Cn,n−1 Cn,n

][
Dn−1(ti)xn−1(ti)+En−1(ti)

Dn(ti)xn(ti)+En(ti)

]
+
[
Kn,n−1 Kn,n

][xn−1
xn

] (8)

τ
R
n = Mn,n+1[An+1(ti)xn+1(ti)+Bn+1(ti)]+

[
Cn,n Cn,n+1

][
Dn(ti)xn(ti)+En(ti)

Dn+1(ti)xn+1(ti)+En+1(ti)

]
+
[
Kn,n Kn,n+1

][ xn
xn+1

] (9)

2.1 Left to Right
In order to determine the contributions of a node to the left

of the node in interest the method of prorogation from the left to
the right. The discrete equation of motion from equation 7 can
be altered into a matrix form as in equation 10.

x
τ

1


R

n

=

 1 0 0
MnAn 1 MnBn − fn

0 0 1

x
τ

1


L

n

(10)
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For convenience we split the xn state (vector) into left and right
components. Given that it is important to remember that xR

n = xL
n

and will be represented as xn. As a short form the matrix equation
from 10 can be represented as 21.

vL
n = PnvR

n−1 . (11)

where, vL
n = [xL

n ,τ
L
n ,1]

T and vn−1 follows the same notation. We
now have the capability of adding in external forces and quanti-
fying some of contributions of a state to its self, to continue the
left to right propagation the next set of states to the left must be
related to the node. Equation 12 shows the means of propagating
the previous states contributions to the left vector.

τ
R
n−1 = Mn−1,n[An(ti)xn(ti)+Bn(ti)]+

[
Cn−1,n−1 Cn−1,n

][
Dn−1(ti)xn−1(ti)+En−1(ti)

Dn(ti)xn(ti)+En(ti)

]
+
[
Kn−1,n−1 Kn−1,n

][xn−1
xn

]
(12)

Using equation 12 we can solve for the position states xn as a
combination of xn−1, τn−1, and previous state knowledge.

xn = Fc−1(Fn−1
c xn−1 − τR

n−1 +Fn
B ) (13)

where,

Fn
c−1 = (−Cn−1,nDn −Kn−1,n −Mn−1,nAn)

−1 (14)

Fn
c =Cn,nDn +Kn,n (15)

and,

Fn
B =Cn−1,n−1En−1 +Cn−1,nEn +Mn−1,nBn (16)

which can then be used to determine the force states τL
n .

τL
n =Cn,nEn +Cn,n−1En−1 +Mn,n−1Bn−1 +Fn

c Fn
c−1τR

n−1
(Fn

c Fn
c−1Fn−1

c +Fn−1
A )xn−1 +FcFc−1Fn

B
(17)

where,

Fn−1
A = Kn,n−1 +Cn,n−1Dn−1 +Mn,n−1An−1 (18)

equations 13 and 17 can be rearranged to create the matrix rela-
tion between the previous right states and the node of interests

left states.

x
τ

1


L

n

=

F11 F12 F13
F21 F22 F23
0 0 1

x
τ

1


R

n−1

(19)

where,

F11 = Fn
c−1Fn−1

c
F12 = Fn

c−1

F13 = Fn
c−1Fn

B
F21 = ((Cn,nDn +Kn,n +Mn,n−1An−1)Fn

c−1Fn−1
c +Fn−1

A )

F22 = Fn−1
c Fn

c−1

F23 = Fn−1
B +Fn−1

A Fn
c−1Fn

B

(20)

equation 19 can be represented as equation 21.

vL
n = FnvR

n−1 . (21)

2.2 Right to Left
While only one directionality is necessary for DT-TMM for

simulation in order to create the control centric model propa-
gation from both directions is necessary. Once again using 7 a
matrix form can be created.

x
τ

1


L

n

=

 1 0 0
−MnAn 1 −MnBn + fn

0 0 1

x
τ

1


R

n

(22)

In this case the right to left matrix will be represented as Jn.

vL
n = JnvR

n . (23)

The right to left propagation requires the the nodes to the right
of the node of interest must be related. This is done by using the
left force component of the next node.

τ
L
n+1 = Mn+1,n[An(ti)xn(ti)+Bn(ti)]+

[
Cn+1,n Cn+1,n+1

][
Dn(ti)xn(ti)+En(ti)

Dn+1(ti)xn+1(ti)+En+1(ti)

]
+
[
Kn+1,n Kn+1,n+1

][ xn
xn+1

]
(24)

from there the current nodes right positions states can be deter-
mined.

xn = Hc−1(Fn+1
c xn+1 − τ

L
n+1 +Hn

B) (25)
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where,

Hc−1 = (−Cn+1,nDn −Kn+1,n −Mn+1,nAn)
−1 (26)

and,

Hn
B =Cn+1,n+1En+1 +Cn+1,nEn +Mn+1,nBn (27)

Which can then be used to determine the right force states.

τR
n = Fn

c Hcn−1τL
n+1 +Fn

c Hc−1Hn
B +Mn,n+1Bn+1 +Cn,nEn

+Cn,n+1En+1(Fn
c H−1

c Fn+1
c +Hn+1

A )xn+1
(28)

where,

Hn+1
A =Cn,n+1Dn+1 +Kn,n+1 +Mn,n+1An+1 (29)

The two above equations can then be adapted to matrix form to
give equation 30.

x
τ

1


L

n

=

H11 H12 H13
H21 H22 H23
0 0 1

x
τ

1


R

n+1

(30)

where,

H11 = Hc−1Fn+1
c

H12 = Hc−1

H13 = Hc−1Hn
B

H21 = Fn
c Hc−1Fn+1

c +Hn+1
A

H22 = Fn
c Hc−1

H23 = Fn
c Hcn−1Hn

B +Mn,n+1Bn+1 +Cn,nEn +Cn,n+1En+1

(31)

The right to left propagation will be represented as,

vR
n = HnvL

n+1 (32)

2.3 Relating the Left Boundary Conditions to current
node n

In this section, we establish the notation for the matrix rela-
tion between the left most boundary conditions and nodal states
of n. From equations 11 and 21

vR
n = PnFnvR

n−1 , (33)
and we can continue this process until we reach subsystem n,

vL
n = FnQnvR

0 , (34)

where

Qn =
n

∏
i=0

PiFi (35)

and Qn denotes the transfer function relating the left boundary
condition to node n. Note that vR

0 represents boundary conditions
at the left edge.

2.4 Relating the Right Boundary Condition to current
node n

Following the general approach described in section 2.3,
vnR can be computed from equations 23 and 32:

vR
n = Hn+1Jn+1vR

n+1 , (36)

This recursive methodology can be used to compute:

vR
n = TnvR

m , (37)

where vR
m is the boundary conditions at right edge, and

Tn =
n

∏
i=m

HiJi , (38)

and Tn represents the transfer function from node m to node n.

3 Decentralized Control Problem Formulation
The previous sections developed the underlying theory

needed to create a DT-FE-TMM control centric model. In this
section a single node decentralized control will be formulated as
will a sub block version that will contain the direct neighboring
nodes as well but focus on controlling the center node.

3.1 Single Node Controller Formulation
Equation 39 represents the relation of the left most boundary

condition to the node in interest. Equation 40 shows the same
process but propagating from the right boundary condition
instead of the left. Equation 41 is the final component of
the system of equation that relates the left side determined
from equation 39 to the right side determined by equation 40.

Q11 Q12 Q13
Q21 Q22 Q23

0 0 1

 0
τ0
1

=

Hn
11 Hn

12 Hn
13c(Mn,n−1Bn−1 +Cn,n−1En−1 +Cn,nEn)

Hn
21 Hn

22 Hn
23cMn−1,nBn +Mn,n−1Bn−1 +(Hn

23cCn,n−1 +Cn−1,n−1)En−1 +(Hn
23cCn,n +Cn−1,n)En

0 0 1

xn
τL

n
1

 (39)
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T11 T12 T13
T21 T22 T23
0 0 1

xm
0
1

=

Fn+1
11 Fn+1

12 Fn+1
13c (Cn,nEn +Cn,n+1En+1 +Mn,n+1Bn+1)

Fn+1
21 Fn+1

22 Fn+1
23c Mn+1,nBn +Mn,n+1Bn+1 +(Fn+1

23c Cn,n+1 +Cn+1,n+1)En+1 +(Fn
23cCn,n +Cn+1,n)En

0 0 1

xn
τR

n
1


(40)

Mn,n(Anxn +Bn) = τ
R
n − τ

L
n + fn (41)

Equations 39, 40, and 41 can be reduced into equation 42.

Cxnxn =CEn−1En−1 +CEnEn +CEn+1En+1 +CR +CL

+CBn−1Bn−1 +CBn+1 +CBnBn + fn
(42)

The representation of the constants from equation 42 can be
found in Appendix B. For the purpose of this paper we selected
the integration technique to be the third order Houbolt integra-
tion scheme, represented in equation 43. The Houbolt integra-
tion scheme was selected for its combination of simplicity and
robustness.

An(ti) = 2
∆T 2

Bn(ti) =− 1
∆T 2 [5x(ti−1)−4x(ti−2)+ x(ti−3)]

Dn(ti) = 11
6∆T

En(ti) =− 1
6∆T [18x(ti−1)−9x(ti−2)+2x(ti−3)]

(43)

Substituting the Houbolt integration scheme into equation 42 al-
lows it to be rearranged the previous states to be related to the
current state in a controllable form in 44.

X(ti) = AX(ti−1)+B(α + fn) , (44)

where the system matrices (A,B) and the exogenous input α are
given by

A =

 1
Cxn

(
−3CEn

∆T +
5CBn
∆T 2 )

1
Cxn

(
3CEn
2∆T +

−4CBn
∆T 2 ) 1

Cxn
(

CEn
3∆T +

CBn
∆T 2 )

1 0 0
0 1 0


(45)

B =

 1
Cxn
0
0

 (46)

α =CEn−1 En−1 +CEn+1 En+1 +CBn−1 Bn−1 +CBn+1 Bn+1 +CR +CL(47)

equation 44 is the equation of motion for the node n, where α

consists of the contribution of forces from neighboring nodes and

TABLE 1. Parameters for simulated finite element beam model

Parameter Value

Number of Elements 20

Density 946 kg
m3

Modulus of Elasticity 1.5GPa

Viscosity 0.0809Pas

Cross Section Area 3.26e−3

Area Moment of Inertia 7.1e−3

Element Length 50mm

Time Step 10µs

fn is the control input applied to the node n. To design a stabi-
lizing decentralized controller, we consider α to be a ”weak”
coupling between node n and its neighbors, and therefore we can
treat node n as a local subsystem. [20] This is unfortunately is a
much more difficult criteria to meet in a finite element method
than it was using the lumped mass-spring-damper system in pre-
vious works. [14] Like the previous work the time step is crucial
to being able to create an effective control though there is not a
direct scalar relationship between desired model parameters and
the time step as there was in the work on lumped mass-spring-
damper systems.

It is important to note that Qi,i, and, Ti,i contain information
on the configuration of the elements that were present between
subsystem n and the boundary conditions. The configuration of
CxR

n
and CEn also change depending on the boundary conditions.

3.2 Sub-Block Controller Formulation
Much of the work done in this field has been focused on

the use of sub-block or substructure analysis for control. [21–23]
This has largely been done to take advantage of the work done by
Ikeda et. al. on decentralized control of overlapping subsystems.
[24] We will be taking a similar approach in developing the sub-
block systems so that we will be able to eventually compare to
other methods. The block equation of state can be represented
by equation 48.
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FIGURE 2. Fast Fourier Transforms of the tip of the beam for both
GFEM and DT-FE-TMM.

Xn−1
Xn

Xn+1


ti

= A

Xn−1
Xn

Xn+1


ti−1

+

 0
Bn
0

(α + fn) (48)

where,

A =

An−1,n−1 An−1,n 0
An,n−1 An,n An,n+1

0 An+1,n An+1,n+1

 (49)

where the Aii are represented by equation 45 and Bn is repre-
sented by equation 46. The off diagonal components Ai j are rep-
resented by equation 50.

Ai j =


1

Cxi

(−3CEi
j

∆T +
5CBi

j
∆T 2

)
1

Cxi

( 3CEi
j

2∆T +
−4CBi

j
∆T 2

)
1

Cxn

( CEi
j

3∆T +
CBi

j
∆T 2

)
1 0 0
0 1 0


(50)

where Cxi is the state of interest i’s constant, CE i
j

is the relation of

the previous velocity components of the jth states to the ith states,
and CBi

j
is the relation of the previous acceleration components

of the jth states to the ith states.
Using the same assumption presented earlier where α is the

“weak” coupling of the nth state to the other non-explicitly es-
tablished states. In this case due to the fact that the neighboring
states contributions are encapsulated in the off diagonal compo-
nents the assumption of “weak” coupling is a more attainable
assumption over a larger range of time steps.

TABLE 2. Parameters for controlled finite element beam model

Parameter Value

Number of Elements 16

Density 15.43e−3 kg
m3

Modulus of Elasticity 11.81MPa

Viscosity 1µPas

Cross Section Area 7589.8mm2

Area Moment of Inertia 583000mm4

Element Length 36.21mm

Time Step .25ms

FIGURE 3. The configuration of the decentralized control beam,
where an external impulse is applied to the tip and the controller acts
on the third node.

4 Results and Discussion
To validate the accuracy of the proposed DT-FE-TMM

method, we validate its prediction against an accepted GFEM
method Table 1 shows the parameters used for both simulations.
Both a GFEM and a DT-FE-TMM model were created and simu-
lated. The GFEM was solved using a Runge-Kutta 4th/5th order
and the DT-FE-TMM used a Houbolt integration technique as
was described above. Figure 2 shows the Fast Fourier Transform
of the tip of the beam subject to an external force applied at the
tip for a duration of 10µs. TThe results indicate that in the low
frequency part of the spectra the two methods predict similar am-
plitudes, but also a slight frequency shift. At high frequencies,
the magnitudes of the predicted spectra are significantly differ-
ent, but because the overall influence of the higher frequencies
is minimal, the approach was considered accurate enough for a
first approximation. It is worth noting at this point in time that
the comparable third order Runge-Kutta method is not numer-
ically stable and therefore was not able to be compared to the
other integration methods.

To test the control aspects of the presented work the param-
eters from Table 2 were used. The system was disturbed by an
impulse along the beam at every node of a magnitude of one
Newton and one Newton-meter. Using the methodology pre-
sented in Section 3 we developed an localized model and then
used it to design a single node and block localized LQR con-
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FIGURE 4. The total energy within the bending beam for the uncon-
trolled case, single node DT-FE-TMM, and block DT-FE-TMM.

TABLE 3. Total beam energy over the simulation

Type Value (Js)

Free Vibrating 0.02186

Single DT-FE-TMM 0.009897

Block DT-FE-TMM 0.006389

Full State LQR 2.4015e−07

troller for the eighth node. The LQR parameters can be seen in
Appendix C and were selected to have similar ranges of input
forces. The configuration of the simulation can be seen in Figure
3. Figure 4 show the total energy of the simulated beam for the

FIGURE 5. The displacement for the eighth node for uncontrolled
case, single node DT-FE-TMM, and block DT-FE-TMM.

uncontrolled beam, single node DT-FE-TMM, and block DT-FE-
TMM. From this we can see that both DT-FE-TMM controllers
have a temporary increase in the system energy and then it reg-
ulates the system energy bellow that of the uncontrolled beam.

For the block controller the final crossing point below the uncon-
trolled beam comes at 0.4625s and for the single controller the
final crossing point is 0.925s. We also ran a simulation of a full
state LQR controller but it is not pictured because it is not visi-
ble compared to the other controllers and the uncontrolled beam
energy. Table 3 shows the total beam energy over the five sec-
ond simulation. We can see that the full state LQR far exceeds
the performance of the DT-FE-TMM controllers and provides a
ceiling of performance.

FIGURE 6. The force input for the eighth node for the full state LQR,
single node DT-FE-TMM, and block DT-FE-TMM controllers.

Figure 5 shows the displacement of the eighth node where
the control input is being applied. When combining the infor-
mation viewed in Figure 5 with the control input forces shown
in Figure 6 we can see that the controller is trying to counter
the large swing of the control point for both controllers by ap-
plying an opposing force. This only makes the initial situation
worse. We can stipulate that due to the lack of state knowledge
that the local controller have they initially excite some primary
frequency in response to higher order frequencies resulting in the
initial over shoot but still manage to regulated the full system.
Figure6 also shows that the maximum and minimum forces for
all of the controllers are similar but that the full states controller
is very active and operating at a higher base frequency than the
DT-FE-TMM controllers.

Figures 7 and 8 show the tip of the beams position and ve-
locity respectively. We can see that the tip velocity for the DT-
FE-TMM controlled simulations is always bounded by the un-
controlled. This correspondence with previous findings that DT-
TMM based controllers do a particularly good job at regulating
velocities of systems.

5 Conclusion
In conclusion we derived a model for DT-FE-TMM which

showed comparable results to the continuous time GFEM simu-
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FIGURE 7. The displacement for the tip for the uncontrolled case,
single node DT-FE-TMM, and block DT-FE-TMM.

FIGURE 8. The velocity for the tip for the uncontrolled case, single
node DT-FE-TMM, and block DT-FE-TMM.

lations methods. The proposed model was used to create a local
decentralized model for use with control concepts. The oper-
ational range of the controller parameters from this model was
smaller then hoped due to constraints on the selected time step.
The results of the controllers that were able to be designed were
promising even given this limitation. We also presented the sub-
block DT-FE-TMM controller that will yield controllers that can
be directly compared to other finite element decentralized con-
trol methods in future works. The advantages of the proposed
methodology consist in that we only need to deal with a local-
ized model of small number of states and need to feedback only
local states, hence less sensor knowledge.Some of the additional
advantages from using the discrete-time approach are easy mi-
gration to flight control software and explicit control with maxi-
mum bandwidth.
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Appendix A: Galerkin Finite Element Matrices

Kn−1,n−1 =
EI
L3

[
12 6
6 4

]
(51)

Kn+1,n+1 =
EI
L3

[
12 −6
−6 4

]
(52)

Kn−1,n = Kn,n+1 =
EI
L3

[
−12 6
−6 2

]
(53)

Kn,n−1 = Kn+1,n =
EI
L3

[
−12 −6

6 4

]
(54)

Cn−1,n−1 =
µI
L3

[
12 6
6 4

]
(55)

Cn+1,n+1 =
µI
L3

[
12 −6
−6 4

]
(56)

Cn−1,n =Cn,n+1 =
µI
L3

[
−12 6
−6 2

]
(57)

Cn,n−1 =Cn+1,n =
µI
L3

[
−12 −6

6 4

]
(58)

Mn−1,n−1 =
ρCA

420∗L

[
156 22
22 4

]
(59)

Mn+1,n+1 =
ρCA

420∗L

[
156 22
22 4

]
(60)

Mn−1,n = Mn,n+1 =
ρCA

420∗L

[
54 −13
13 −3

]
(61)

Mn,n−1 = Mn+1,n =
ρCA

420∗L

[
54 −22
−22 4

]
(62)

Mn,n = Mn−1,n−1 +Mn+1,n+1 (63)

Appendix B: Constants from Decentralized Control
Construction

CxR
n
=−(T21T−1

11 Fn+1
12 +Fn+1

22 )−1(−T21T−1
11 Fn+1

11 +Fn+1
21 )+

(Q22Q−1
12 Hn

12 −Hn
22)

−1(Hn
21 −Q22Q−1

12 Hn
11)+Mn,nAn

(64)

CEn = (T21T−1
11 Fn+1

12 +Fn+1
22 )−1(Fn+1

23c Cn,n +Cn+1,n −T21T−1
11 Fn+1

13c Cn,n)

−(Q22Q−1
12 Hn

12 −Hn
22)

−1(Hn
13cCn,n +Cn−1,n −Q22Q−1

12 Hn
13cCn,n)
(65)
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CEn+1 = (T21T−1
11 Fn+1

12 +Fn+1
22 )−1(Fn+1

23c Cn,n+1 +Cn+1,n+1−
T21T−1

11 Fn+1
13c Cn,n+1 −T21T−1

11 Mn+1,n+1An+1Hn+2
13c Cn+2,n+1

+Hn+2
23c Cn+2,n+1 +Cn+1,n+1)

(66)

CEn−1 =−(Q22Q−1
12 Hn

12 −Hn
22)

−1(Hn
23cCn,n−1 +Cn−1,n−1−

Q22Q−1
12 Hn

13cCn,n−1 −Mn−1,n−1An−1Fn−1
13c Cn−2,n−1

−Fn−1
23c Cn−2,n−1 −Cn−1,n−1 +Q22Q−1

12 Fn−1
13c Cn−2,n−1)

(67)

CBn+1 = (T21T−1
11 Fn+1

12 +Fn+1
22 )−1(−T21T−1

11 Fn+1
13c Mn+1,n+1 +Mn,n+1+

T21T−1
11 Hn+2

13c Mn+2,n+1 +Mn+1,n+1An+1Hn
13cMn+2,n+1

−Mn+2,n+1 +Mn+1,n+1)
(68)

CBn = (T21T−1
11 Fn+1

12 +Fn+1
22 )−1Fn+1

23c Mn+1,n −Mn,n+

(Q22Q−1
12 Hn

12 −Hn
22)

−1Hn
23cMn−1,n

(69)

CBn−1 =−(Q22Q−1
12 Hn

12 −Hn
22)

−1(−Q22Q−1
12 Hn

13cMn,m−1+

Mn,n−1 +Q22Q−1
12 F13cMn−2,n−1 −Mn−1,n−1An−1Fn−1

13c Mn−2,n−1
−Mn−2,n−1 −Mn−1,n−1)

(70)

CL =−(Q22Q−1
12 Hn

12 −Hn
22)

−1(Fn−1
21 µ13 +Fn−1

22 µ23
−Mn−1,n−1An−1(Fn−1

11 µ13 +Fn−1
12 µ23)+Fn−1

23c Mn−1,n−2Bn−2
+(Fn−1

23c Cn−2,n−2 +Cn−1,n−2)En−2+

Q22Q−1
12 Hn

13c(F
n−1
11 µ13 +Fn−1

12 µ23))
(71)

CR = (T21T−1
11 Fn+1

12 +Fn+1
22 )−1((Hn+2

23c Cn+2,n+2 +Cn+1,n+2)En+2
+T21T−1

11 (Hn+2
11 ε13 +Hn+2

12 ε23 +Hn+2
13c Cn+2,n+2En+2)+

Mn+1,n+1An+1(Hn+2
11 ε13 +Hn+2

12 ε23 +Hn+2
13c Cn+2,n+2En+2)+

Hn+2
21 ε13 +Hn+2

22 ε23 +Hn+2
23c Mn+1,n+2Bn+2)

(72)

Appendix C: LQR Parameters

Qsingle =


1e5 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (73)

Rsingle = 7e−6I (74)

where I is a 2-by-2 identity matrix

Qblock =

0 0 0
0 2∗Qsingle 0
0 0 0

 (75)

where the 0’s are 6-by-6 zero matrices

Rblock = Rsingle (76)

QFullState = 1e4I (77)

where I is a 64-by-64 identity matrix

RFullState = 2e3I (78)

where I is a 2-by-2 identity matrix
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