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Integrated E - e

Systems Airspace Systems Program
Research Program

Fundamental Aeronautics Program Directly address the fundamental ATM
research needs for NextGen by
developing revolutionary concepts,
capabilities, and technologies that
will enable significant increases
in the capacity, efficiency and
flexibility of the NAS.

Conduct research at an integrated
system-level on promising concepts and
technologies and explore/assess/demonstrate
the benefits in a relevant environment

Conduct fundamental research that
will produce innovative concepts,
tools, and technologies to enable
revolutionary changes for vehicles
that fly in all speed regimes.

Aviation Safety Program

Conduct cutting-edge research that will produce
innovative concepts, tools, and technologies to improve
the intrinsic safety attributes of current and future aircraft.

Aeronautics Test Program

Preserve and promote the testing capabilities of
one of the United States’ largest, most versatile
and comprehensive set of flight and ground-based
research facilities.




FA Program Organization Structure

Fundamental Aeronautics
Program Office

|
Aeronautical
Sciences Project

Aeronautical Sciences (AS)
Enable fast, efficient design &
analysis of advanced aviation
systems from first principles through
physics-based tools, methods, &
cross-cutting technologies.

| .
| | |
High Speed
Project

Fixed Wing
Project

Rotary Wing
Project

Fixed Wing (FW)
Explore & develop technologies
and concepts for improved
energy efficiency &
environmental compatibility of
fixed wing, subsonic transports

Rotary Wing (RW)
Enable radical changes in the
transportation system through
advanced rotary wing vehicles

concepts & capabilities.

High Speed (HS)

Enable tools &technologies and
validation capabilities necessary to
overcome environmental &
performance barriers to practical
civil supersonic airliners.
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a3y NASA Subsonic Transport System Level Metrics

TECHNOLOGY GENERATIONS
Technology Readiness Level = 4-6
TECHNOLOGY ( e )
BENEFITS*
N+1 (2015) N+2 (2020*) N+3 (2025)
Noise
(cum margin rel. to Stage 4) e i Tl
LTO NOx Emissions _ang L _ana
(rel. to CAEP 6) e e R
Cruise NOx Emissions R0 200 _ano
(rel. to 2005 best in class) X% 70% S0%
Aircraft Fuel/Energy Consumption* o e o —
(rel. to 2005 best in class) <% 0% 60% —

* Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. N+1 and N+3 values
are referenced to a 737-800 with CFM56-7B engines, N+2 values are referenced to a 777-200 with GE90 engines
** ERA's time-phased approach includes advancing "long-pole” technologies to TRL 6 by 2015

T CO, emission benefits dependent on life-cycle CO,, per MJ for fuel and/or energy source used



N2A Turbofan — HPT Cooling Schematic
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“‘Non-chargeable” cooling
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— Cooling levels defined at max. cycle temperatures (RTO for subsonic engines)
— Non-chargeable cooling flow has little/no impact on cycle performance

— All flow available to perform work through HPT rotors

— Further downstream flow is injected, more penalizing

— Penalty mitigated somewhat due to temperature decrease through machine

Reference N2A engine assumes high temperature metallics/TBCs — no CMCs



Benefits of Modulating Cooling

autics Research Institute

e 12% cooling reduction leads to 3.6% Fuel Burn reduction
e If 5% core flow saved, 1-1.5% fuel burn reduction

e Currently this can be scheduled
— Need safety margin

— Unable to adjust for changes in environment, reduction of coolant
flow due to clogging etc.

— Could save 1% fuel burn using this method after trading weight

e Would be nice to modulate cooling based on real-time
conditions
— Additional 1.5% fuel burn savings possible.



Potential Fuel Burn Benefit
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-25

e 12% core flow used.
-20 * If 5% saved, .8%SFC benefit.
e This translates to 1.5%fuel burn reduction.

% Fuel Burn -15
Reduction 59 SFC Reduction
- (0]

-10
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0% SFC Reduction

0 10 -20 -30

% Engine Weight Reduction

» This was previous work for a 300 PAX aircraft
» Benefits might be slightly lower for N2A (767 class) aircraft
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Approach

tics Research Institute

1. Real-time detection of thermal map on
blade

2. Modular Cooling to target particular
regions of blade/blade rows

3. Feedback loop to modulate cooling to
cooling circuits defined in 2 based on real-
time detection from 1.



Concept
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Only the marginal cooling
flow is switched

Coolingairto
target

—c)
Passive biasappliedso
default cooling flowto
targetis maximum
Cooling Airmsss) OR
Active control applied to
override passive bias and
divert extra cooling flow
away fromtarget :
~ Coolingair
retumed
—

Thermal Image
of Blade

Valve

Micro-controller




Phosphorescence
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* Phosphorescence

— Coupons with phosphor coatings to be
developed and tested against existing
methods (IR)
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Phosphor Thermometry
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* Noncontact (unlike thermocouples)

* IR pyrometry has been problematic
— Interference of radiation reflected by surface.

— Temperature measurement averages over depth penetration of IR into ceramic thermal
barrier coatings.

— Uncertain emissivity introduces uncertainty into pyrometer measurements.
 Thermographic phosphors applied to thermal barrier coated surface overcome
these issues.
— Non-contact
— Nointerference from reflected radiation 2D temperature map of
— Insensitive to surface emissivity cooling produced by air
— Intrinsically surface sensitive jet impingement

e,
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Infrared Thermography
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* No need for laser beam
e Does not require syncing unlike phosphor method
e Noncontact method provides more detailed mapping of surface

2925

41289.0
2883
2875
2867

12




Hurdles
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* Resolution

* Precision

* Processing speed

* Interface

e Algorithm

* Performance with degradation

e Optical access

* Operating environment

» Effect of environment on fluidic device operation
* Failsafe
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Setup
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3” x 3” Plate

T=1200K

Diameter = 0.325in

Hole spacing (pitch) = 0.975in

Plate thickness = 1.25” ~8 diameters

Holes at 30 degrees to the flat plate
surface

Top view
14
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2D Temperature Mapping of Air Cooling Jet
Impingement
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Laser heat flux

1cm

970°C
980°C
990°C
1000°C
1010°C
1020°C
1030°C
1040°C
1050°C

Cooling air jet fixture in 2D temperature map of
high heat flux laser facility cooling produced by air
jet impingement

Insensitive to surface emissivity & reflected radiation!

February 19-27, 2014 NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar




Thermal Mapping of Honeywell Stator Vane in
NASA GRC Mach 0.3 Burner Rig Flame

Surface temperature maps Visible

ncrease air flow through
cooling holes

)

Min flow High flow

Good temperature measurements despite rust stain!
Would not be possible with pyrometer!

Before burner rig test After burner rig test

February 19-27, 2014 NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar



J85-GE-5 Engine Test at UTSI
Broad, Uniform Heat Flux at Center of Flame
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Surface Temperature Mapping Configuration
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Afterburner Flame at Night
February 19-27, 2014 NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar

Expanded Laser Target



Surface Temperature Mapping of Honeywell
Stator Vane in AEDC J8S5 Afterburner Flame

Surface Temperature

1010 Oc
990

| NASA Aeronautics Research Institute ... |
PLA (throttle) =99°
First gate image Decay Time Map
' X 16 US
14
12

4 s

1

970
950
930
910

1120 °C
1100
1080
1060
1040
1020

Evidence of air film cooling
February 19-27, 2014 NASA Aeronautics Research Mission Directorate 2014 Seedling Tecincar sennnar



Phosphor Testing
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Testing delayed due to Alumina sample cracking and Burner
Rig issues

e Estimate completion by April

New materials selected to withstand machining and high

temperatures
19




Infrared Thermography
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MATLAB script written to convert from pixels to
coordinates.

Hole detection method developed.

Effectiveness calculation to be performed based on image
values and not reference thermocouple.

Surface 1s broken into zones.

Each zone 1s compared to target effectiveness and produces
a signal for the feedback mechanism of O, 1 or 2.

0 means decrease coolant flow.
1 means increase coolant flow.
2 means system functioning, do nothing.
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1138.8

8355

786.0

7365

687.0

635.1

585.6

536.1

486.6

4347

3852

335.7

532

Target effectiveness = 0.5
Zone 1 mean = 0.519
Zone 2 mean = 0.57
Zone 3 mean = 0.57
Threshold T = 820K

Max T found in Zone 1 =
819K

Send signal 2 to controller

Because Max T is close to
threshold
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Algorithm Example - S00C

foma‘?gﬁe& ‘
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1138.8

Target effectiveness = 0.5
Zone 1 mean = 0.485
Zone 2 mean = 0.53
Zone 3 mean = 0.53

“®¢ " Threshold T = 820K

627.9

8245
7759

7273

523 Max T found in Zone 1 =
s 806.5K

431:3 Send signal 2 to controller
— do nothing

382.7

3342
532



Algorithm Example - 520C
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1138.8

Target effectiveness = 0.5
Zone 1 mean = 0.509
Zone 2 mean = 0.56
Zone 3 mean = 0.57

®* " Threshold T = 820K

638.8

8414
7913

M3

s Max T found in Zone 1 =
s 832K

s oend signal 1 to controller
— increase cooling because
Max T is higher than
threshold

386.2

336.1
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Algorithm Regions
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Cooling flow needs to be modulated based on whether blow off
exists or not
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Modulation
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* Modulation is to be achieved by controlling massflow of
compressor core flow that is diverted to turbine.

* The massflow that is not required for cooling 1s allowed to
continue to the combustor.

* Additional fine controls exist at the stage and blade level.
* The diverter can be controlled by a valve.

* This requires orders of magnitude less weight and space than a
mechanical valve to control coolant.
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Circuit Layout
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e Cooling circuit to branch at

S CompreSSOF Only the marginal cooling Cooling air to
flow is switched ~ target
— Turbine I -
asswebmsapphedso
Dete m | ne defaul; coolmg flowto
. Blade ROW e target is maximum
feasibility
Cooling Airmss) OR
— Blade
Active control applied to
override passive bias and
divert extra cooling flow
away fromtarget .
- Coolingair
~ retumed

—



Cooling System
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Fifth~Stage
Compressor Bleed
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Compressor

Cooling System Cont.

Turbine

V3
V2 e Stage 1
F1

\_ Stage 2

V4

Cooling Scheme A

Blade 1

Blade 2

R1
Blade 3

Blade n

Blade 1

Blade 2

R1
Blade 3

Blade n



esearch Institute
A water tank used to enable
pressure differences across exit
orifices by varying exit tube depth
in water.

Demonstrated that by applying
suitable pressure to control
orifices, relative flow through exit
tubes can be controlled.

Fluidic devices

30



Fluidic Devices
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* Showed that for F1, repeatable consistent control is Inlet’ || U
possible
* If port 2is closed, port 1 controls jet exit such that Control port 1 /\Control port 2

flow always exits at 2 unless port 1 is closed
* If ports are both open, both control ports can be

used to switch flow
F1

Control pOI’t 1 Control port 2 1 Exit 1 Exit 2 L

Exit 1 Exit 2 Exit indicator

2l
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Conclusions
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* Many tasks still in progress.

— Burner rig phosphorescence tests

— Prototype of sensing and feedback system
* Infrared thermography shows promise for on-board sensing.
* Fluidic devices are feasible as modulation mechanism.

* Space Act Agreement with GE in process to apply system
concept to GE specific engine with flow rates and conditions
specified.
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Next Steps

Testing of Phosphor thermometry in burner rig
— Single beam vs. zonal scan

Comparison with IR

Test prototype controller with algorithm for test matrix to
determine operating envelope

Testing with engine scale hardware (optics, 3D geometry,
smaller high temperature camera)

Applicability under degradation of sample and optics
Testing of interfaces between controller and sensing

Long range goal would be to automate image processing via
FPGA or embedded system.
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