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Innovation 

• Problem Statement: 
– Hybrid Wing Body aircraft feature 

multiple control surfaces 

– Very large control surface geometries 
can lead to large hinge moments, 
high actuation power demands, and 
large actuator forces/moments 

– Due to the large number of control 
surfaces, there is no unique 
relationship between control inputs 
and aircraft response 

– Different combinations of control 
surface deflections may result in the 
same maneuver, but with large 
differences in actuation power 
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Boeing OREIO HWB Concept 

13 Elevons 

8 High-lift devices 

2 Rudders 

2 All-moveable tails 

25 Surfaces total 
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Innovation Cont’d 

• Proposed Solution 
– Apply artificial intelligence 

methods to the HWB control 
allocation problem 

– Use artificial neural networks 
(ANN) to develop innovative 
control surface schedules 

– Fully flexible aeroelastic finite 
element model for complete 
structural and aerodynamic 
vehicle representation 

– Reduce actuation power 

– Minimize hinge moments and 
actuator loads 

– Minimize structural loads 
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Project Team 

• NASA Langley Research Center 
– Frank H. Gern (PI), Dan D. Vicroy, Michael R. 

Sorokach 
– Project management 
– Aeroservoelastic finite element modeling 

• Virginia Polytechnic Institute and State Univ. 
– Rakesh K. Kapania, Joseph A. Schetz, Sameer 

Mulani, Rupanshi Chhabra 
– Finite element analysis 
– Neurocomputing and actuation power 

optimization 

• Boeing Research and Technology 
– Norman H. Princen, Derrell Brown 
– Actuator dynamics, control surface geometry,  

effectiveness, and deflection limits 
– Provide wind tunnel and flight test data 
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Neural  

network 
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Technical Approach 

• Main Objective: 

– Develop a proof-of-concept process showing that 
Neurocomputing can be applied to minimize actuation 
power! 

• Key Accomplishments 

– Established complete process for single DOF maneuver 

– Developed suitable aeroelastic model 

– Generated aeroelastic trim database 

– Trained neural network using training database 

– Optimized neural network using genetic algorithm 

– Quantified optimization results 
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100 Sample Data

500 Sample Data

Process Flow 

• Developed a complete semi-automatic process from design 
concept to optimized control surface schedule 
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Aeroelastic Trim Data Nastran FEM HWB Concept 

Validation: Nastran FEM Optimized CS Schedule Neural Network 
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Aeroelastic Model 

Boeing OREIO Hybrid Wing Body Concept 
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OREIO = Open Rotor Engine Integration on 
an HWB (Non-proprietary configuration) 
Wing span 212.7ft, TOGW 475,800lb 
NASA-CR-2011-217303 
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Aeroelastic Model Cont’d 
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4 Outboard 

elevons 

2 Inboard 

elevons 

Trim 

surface 

Rudder 

• Fully flexible aeroelastic FEM Model 

• 8 independently actuated control 
surfaces 

• Control surface linkage coefficients 
(AELINK) randomly generated for 
aeroelastic trim database 

• Generate stability and control 
derivatives and hinge moments 

• Each solution is a trimmed condition 

Boeing OREIO 

HWB Concept 

OREIO Nastran 

FEM Model 

Half model for 

symmetric pitch 

analysis 
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Neural Network Training Data 

• Test case: 2.5G symmetric pull-up 
– High wing loading, large deformations 
– Structural flexibility  not negligible 

• Symmetric halfmodel 
• All control surfaces are active 

– 7 trailing edge elevons, 1 rudder 

• Run Nastran aeroelastic TRIM 
solution (SOL 144)  
– Random sets of control surface linkage 

coefficients (AELINK) 
– Up to 2500 runs (runtime:  5sec/run) 
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Nastran aeroelastic trim analysis  

(2.5G pull-up) 

• Store linkage coefficients, control surface deflections and hinge moments in 
aeroelastic trim database  

• Figure of merit: Absolute hinge moment sum  
–  proportional to actuation power 
– Hinge moment x deflection = actuation energy 
– Hinge moment x deflection rate = actuation power 
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Neural Network Training Data 

• Check database suitability for neural network training 
– Probabilistic density function of hinge moment data 
– Data is distributed evenly enough for neural network training 
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100 Sample Data

500 Sample Data

Probabilistic hinge 

moment density function 

• Training database 
contains 
– Hinge moments for each 

individual control surface 
– AELINK control surface 

linkage coefficients 
– Control surface deflections 
– Up to 2500 trimmed 

maneuver data sets 

• Use neural network to 
find the best possible 
minimum 

Minimum possible 

hinge moment 
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Neural Networks Background 
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• Artificial Neural Networks (ANN) are inspired by the 
functionality of biological nervous structures. 

• Training the ANN is accomplished by adjusting the 
synaptic weights at the neurons, i.e. numerical 
optimization of a nonlinear function.  

• Optimization generally achieved through simulated 
annealing or genetic algorithms. 

• Neural networks have successfully been applied to a 
wide variety of multidimensional engineering 
optimization problems. 

Biological Neuron2 Artificial Neuron2 Simple ANN3 

G(u/T) 

Human brain contains 

86-100 billion neurons1 

Image credits: 1iDesign, Shutterstock 
2http://ulcar.uml.edu/~iag/CS/Intro-to-ANN.html 
3http://digital-mind.co/post/artificial-neural-network-tutorial 

//upload.wikimedia.org/wikipedia/commons/e/e4/Artificial_neural_network.svg
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Neural Network Architecture 
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• 7 or 8 Input Neurons 

• Tested different input parameters 

- 7 AELINK coefficients 

- 8 Control surface deflections 

• Single output neuron 

• Representing absolute hinge moment sum  

• Tested different numbers of 

Hidden Neurons (120-300) 

• Tested two hidden layer 

transfer functions with similar 

results 

- log sigmoid (log-sig) 

- hyperbolic tangent 

sigmoid (tan-sig) 

• ANN implemented in Matlab neural network toolbox 
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Neural Network Training 
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• ANN trained through backpropagation using Genetic Algorithm 

• Data subset used for NN training 

• Testing using remaining data 

• Excellent fit for complete data set 

• “Neural Network has successfully 
learned Nastran!” 

• Input Param.: Control Surface Deflections  
• Output Param.: Absolute Sum of Hinge 

Moments 
• Data Samples: 1782 
• Number of Neurons : 300 
• Hidden Layer Transfer Function : Log-Sig 

Training Test Full Data Set 
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Optimization Results 

• Control Surface Deflections (degrees) 
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Input Parameters 

  
AELINK 

Coefficients 

Control Surface 
Deflections 

AOA 8.12 7.56 

Elevator 12.75 7.84 

Rudder 11.04 15.30 

Inboard 1 -12.74 5.80 

Inboard 2 -12.73 -20.80 

Outboard 1 12.70 19.25 

Outboard 2 12.74 18.88 

Outboard 3 12.59 17.96 

Outboard 4 12.56 10.78 

• Optimum solution depends on input parameter 
– Two different control surface schedules 
– Underlines problem of non-unique control surface schedules for same 

maneuver! 
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Optimization Results 

• Absolut Sum of Hinge Moments (lb-in) 
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Input Parameters 

  AELINK Coefficients 
Control Surface 

Deflections 

Minimum from Aeroelastic Trim Data 
Set 

1.7309e+06 1.7309e+06 

Neural Network 1.6579e+06 1.5418e+06 

Nastran Validation (SOL 144 Using NN 
AELINK Coefficients) 

1.6600e+06 1.5418e+06 

% Error 0.1242% 5.7791e-14% 

Improvement over best Nastran case 4.4% 12.3% 

• Using control surface deflections results in lower hinge moment sum  

• More than 12% improvement over best Nastran SOL 144 

• For both cases: exact match between Neural Network prediction and 
Nastran validation! 
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Boeing Actuator Dynamics Analysis 

• Developed for BWB-450-1L full scale airplane piloted low 
speed flight dynamics simulation 

• Validated through X-48 wind tunnel and flight testing 
• Implemented in Matlab/Simulink 
• Tool has been modified for OREIO actuator dynamics analysis 
• Model suitable for  

– actuator sizing 
– actuator dynamics  
– actuator stiffness/damping 
– control surface geometry 
– control surface effectiveness 
– deflection limit analysis 

• Results will be used for transition from hinge moment analysis 
to actuation power calculations (Phase II) 
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Boeing Actuator Model and X-48B 

Blended Wing Body Demonstrator 
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Potential Impact of the Innovation 

• Reducing actuation power is an enabler for ultra efficient 
commercial transport aircraft and therefore directly impacts the 
National Aeronautics Challenges 

• Research applies to three of the six ARMD Strategic Thrust areas 
– Innovation in Commercial Supersonic Aircraft 
– Ultra-Efficient Commercial Transports 
– Transition to Low-Carbon Propulsion 
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• Approach reduces power requirements, 
hinge moments, structural loads, and 
therefore overall vehicle weight 

• Process suitable to exploit full potential 
of multiple distributed control surfaces 

• Process is easily applicable to other 
innovative and unconventional 
configurations 

Boeing/NASA HWB Concept 
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Process Interface 

Potential Impact of the Innovation 

• Process is configuration independent and can be applied to any vehicle type! 

– Builds on aeroelastic models that usually already exist in a conceptual or 
preliminary design structural sizing effort 

– Does not require to setup a Nastran SOL 200 optimization problem (which can be 
very tedious and time consuming) 

– Only interface between FEM analysis and neural network optimizer is aeroelastic 
trim database (can be generated via Nastran batch routine) 

• These benefits even outweigh the benefits in reduced computational time! 

February 19–27, 2014 NASA Aeronautics Research Mission Directorate 2014 Seedling Technical Seminar  19 

2 4 6 8 10 12

x 10
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-6

Sum(Abs(Hinge Moment))

P
ro

ba
bl

e 
D

en
si

ty
 F

un
ct

io
n

 

 

100 Sample Data

500 Sample Data

Aeroelastic Trim Data Nastran FEM Neural Network 
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Potential Impact of the Innovation 
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• Process can easily be applied to other 
vehicles! 

• Low Boom Supersonic Vehicles 
– Very difficult to trim even for cruise 

conditions, more challenging for 
maneuvering  

– Extremely thin airfoils require detailed 
structural models and aeroservoelastic 
models for realistic analysis 

– Beyond the scope of traditional flight 
controls models 

• Distributed Electrical Propulsion (DEP) 
– Robust transition control across pitch, 

roll, yaw while achieving high cruise 
aerodynamic efficiency  

– Distributed concentrated masses  
– High structural flexibility 
– Significant configuration changes in flight 

NASA Low Boom Supersonic Transport Concept 

Greased Lightning DEP Demonstrator 

LEAPTech DEP General Aviation Concept 
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Distribution/Dissemination 

• Planned Publications 
– Parametric Finite Element Model for Hybrid Wing Body 

Structural Optimization and Aeroservoelastic Analysis, 
AIAA SciTech Conference, January 5-9, 2015, Orlando, FL. 

– An Artificial Intelligence Based Process for Actuation Power 
Optimization on Tailless Aircraft, AIAA SciTech Conference, 
January 5-9, 2015, Orlando, FL. 

• Projects Suitable for Technology Infusion 
– Distributed Electrical Propulsion (DEP) 

– High-Speed System Level Tools and Methods Development 
(Supersonics Research) 

– Environmentally Responsible Aviation (ERA) 

– Fixed Wing (FW) 
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Next Steps 

• Update FEM to full aeroservoelastic model 
– Incorporate Boeing Phase I actuator and control surface sizing  
– Include actuator dynamics for full aeroservoelastic FEM 
– Switch to full model for arbitrary/asymmetric maneuver analysis (engine out, 

dynamic overswing, sideslip) 

• Apply Phase I process to complete maneuvers (e.g. pull-up 1g2.5g) 
– Quasi-steady approach, compute deflection schedule for each g increment 
– Calculate actuation energy  
– Compare with conventional control surface schedule 
– Additional figures of merit (stresses, deformations, structural loads, weight) 

• Switch from quasi-steady approach to full dynamic model 
– Develop state space model from Nastran aeroservoelastic analysis 
– Apply neurocomputing approach to dynamic state space model 
– Compare results and show potential of ANN process 

• Develop neurocomputing process into a full user friendly tool  
– Can easily be leveraged into other projects (e.g. supersonics, DEP, etc.) 
– Compliance with NASA software development process 
– Provide Nastran batch wrapper, documentation, manual, validation, GUI, etc. 
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Conclusions 

• Developed a proof-of-concept process to apply 
artificial intelligence to minimize actuation power 

• Applied neural network optimization to fully 
aeroelastic finite element flight controls model 

• Accomplished >12% improvement over best Nastran 
solution  

• Process is independent of vehicle configuration 

• Significantly reduced processing and setup time 
(noNastran optimization required) 

• Laid all the necessary ground work for a successful 
Phase II project 
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Backup Slides 
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Project Schedule 
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100 Sample Data

500 Sample Data

• All work tasks were successfully completed 


