Flight validation of cruise efficient, low noise, Extreme short takeoff and landing (CESTOL) and circulation control (CC) for drag reduction enabling technologies

February 21, 2014

Bruce Cogan (DFRC Controls and Dynamics Branch)
Dr. Nicholas Alley (Area-I)
Craig Hange (ARC)
Nhan Nguyen (ARC Intelligent Systems Division)
Brian Spivey (DFRC Flight Simulation Branch)

NASA Aeronautics Research Mission Directorate (ARMD)
2014 Seedling Technical Seminar
February 19–27, 2014
Vision- CESTOL Airliners to reduce airport congestion

“The FAA estimates that increasing congestion in the air transportation system of the United States, if unaddressed, would cost the American economy $22 billion annually in lost economic activity by 2022” FAA Fact sheet

The FAA Next Generation (NextGen) Air Transportation System Project is transforming the current Air Traffic Control System to address this issue. Nextgen, in addition to modernizing current guidance, arrival and departure technologies and procedures, is opening the door for new aircraft types like CESTOL that will significantly contribute to reducing air traffic congestion, flight delays and airport noise.

The unique capabilities of CESTOL Aircraft accomplish this in three ways:
• By using underutilized shorter runways at larger airports
• By using smaller underused airports in metropolitan areas
• STOL flight trajectory keeps offending aircraft noise within airport boundary
Background- CESTOL Wind Tunnel Testing

Advanced Model for Extreme Lift and Improved Aeroacoustics (AMELIA)

- 1/11 Scale wind tunnel model of a future 100 passenger CESTOL aircraft
- Joint collaboration between NASA ARC and CalPoly San Luis Obispo
- Over 290 data run were made in the National Full-Scale Aerodynamics Complex (NFAC)

- Tests show improvements to lift performance with circulation control
- Tests also showed importance of leading edge blowing for stall prevention
Background - Flight Test the next step

- Flight Test has proven crucial from moving new technology and ideas from the lab to use in the real world
 - Focus on overall aircraft, not components (wings, engines, controls, etc.)
 - Provides integration and performance evaluation of new technology with conventional aircraft systems
 - Provides insight into operational challenges; flight control law design, aircraft handling qualities, transients and unsteady flow effects, stall and upset characteristics

- Despite proven benefits, few new technologies go beyond the lab or wind tunnel tests to full or sub scale flight test and to eventual use in the real world due to:
 - High costs in developing and testing a new dedicated X-plane
 - High costs and difficulties modifying existing aircraft as aerodynamics and circulation control test beds
 - Time to build or modify a test aircraft requires early program funding and static research priorities
Innovation: A highly reconfigurable test bed aircraft to test CESTOL and other circulation control (CC) technologies

Prototype Test Evaluation Research Aircraft (PTERA)

PTERA Base Line (BL)
- 10% Scale B-737 Like aircraft
- 11 ft wing span, 10 ft length, 200 lbs wt
- Flight tested Spring 2013
- Additional testing Summer 2014
- Flight test data includes complete Baseline performance data and aero coefficients available to researchers
- Delivery of PTERA BL to NASA in Fall 2014 under NASA SBIR Program

PTERA Combined Circulation Control (C3)
- Modification of PTERA BL under ARMD Seedling fund to add and test CESTOL circulation control technologies
 - Dual radius CC trailing edge flap
 - Leading edge flow control
 - Over-the-wing powered lift engine
- Flight testing in Phase 2 will allow direct performance comparisons with PTERA BL as well as maturing CESTOL/CC technologies
Phase 1 Technical Approach

- Remove PTERA BL equipment from vehicle
- Install CESTOL/CC hardware to convert PTERA BL to PTERA C3
- Perform functional testing of all PTERA C3 hardware
- Develop releasable PTERA Simulation using NASA DFRC Core Simulation Architecture and standard tools.
- Develop aero data tables for PTERA BL and PTERA C3 for use in simulator from previous wind tunnel and flight data
- Perform ground testing of PTERA C3 at Georgia Tech Research Institute to measure wing exit pressures at several points on the wing trailing edge at different throttle and plenum gate setting.
- Add ground test data to PTERA Simulations for use in controller development in Phase 2
- Other preparations required for flight test in Phase 2.
Impact of Innovation

• This innovation will increase TRL of CESTOL/CC technology thru early flight test at a cost much lower than other flight test aircraft.

• Performance of CESTOL/CC technologies can be realistically determined by direct comparison to a base line aircraft.

• This innovation will provide test data, simulations and development of a highly capable, highly reconfigurable flight test vehicle for use by researchers in the Circulation control community.
System Layout

PTERA-C3 Configuration
Ducting/APU

1. Air is brought in through Intake Ducts
2. Compressed by Electric Ducted Fans
3. Mixed in main duct then split to leading and trailing edge ducts
4. Sent to leading and trailing edge wing plenums

Intake Ducts

Internal Ducting

Main Duct

Electric Ducted Fans

Duct Exits to LE and TE Wing Plenums
PTERA-BL to PTERA-C3 Conversion

- Flow Gate and Compressor Controller Interface
- Compressor Controllers
- Compressor Batteries
- CC control system and PTERA avionics interface
- OmegaBus A/D Converter
- Compressor
- Plenum Flow Gates and Actuators
- Plenum/Static Pressure Transducers
PTERA-BL to PTERA-C3 Conversion

Trailing-Edge Jet Slot

Aft Plenum Pressure Port

Dual-Radius Coanda Flap

Aft Plenum “Guillotine” Flow Gate

Set and lock screws used to adjust slot height
Compressor throttle and plenum gate openings were commanded from the right computer. Other computers were used for data collection.

Miniature pitot tube was used to gather pressures at several wing exit locations.

Data was recorded on both wings.
Movie: PTERA C-3 Data Collection
Movie: PTERA C3 Flow Visualization
• Maximum jet slot velocities were measured along the span at various compressor throttle settings with open flow gates
• Two mid-span (15.75” and 21.75”) measurements at various throttle and gate settings were also taken (averaged values at 18.75” are shown in chart)
• The velocity measurements will be used with corresponding internal plenum pressure measurements to develop flow system control algorithms
• The momentum coefficient varies with airspeed:
 \[C_\mu = \frac{\dot{m}V_j}{qS} \]

• Note that momentum coefficients presented here are based on the maximum slot velocity, and assume a fully turbulent flow profile.

• Circulation control system was designed to provide a total \(C_\mu \) of 0.061 at an airspeed of 44 ft/s. Even at reduced throttle setting, the system is easily able to achieve this (see following slide for wind tunnel results)
Preliminary Test Results

- PTERA-C3 wind tunnel data was collected under Phase II SBIR Contract #: NNX08CA44P at GTRI’s model test facility.
- Shows lift coefficient increases of over 0.8 for a total C_{μ} of 0.061 at an airspeed of 44 ft/s.

Trimmed Drag Polars for Various Engine Thrust and Trailing Edge Circulation Control Settings: Hood OFF

$q_{\infty} = 6.7$ psf, $S_{ref \, 1/2 \, span} = 2.243$ ft2, $c = 8.75$ in, $\delta_{fap} = 60^\circ$, $\delta_{htail} = 10^\circ$, $x/c_{cg} = -0.25$, $y/c_{cg} = 0.65$

- $C_{\mu} = 0.061$, $CT = 2.38$
- $C_{\mu} = 0$, $CT = 2.38$
- $C_{\mu} = 0.061$, $CT = 1.2$
- $C_{\mu} = 0$, $CT = 1.2$
- $C_{\mu} = 0.061$, $CT = 0$
- $C_{\mu} = 0$, $CT = 0$
All ground test data as well as future flight test data will be available to interested researchers.

Test data will be added to the proprietary Area-I SimX flight simulator during Phase 2.

As part of the Phase 1 effort, a releasable simulation of PTERA C3 was developed utilizing the NASA DFRC Core simulation structure. Ground test data will also be added to this simulation.

The NASA DFRC simulation also includes data for the baseline PTERA aircraft that can be used for comparison with PTERA C3.
Summary

• Circulation control system was integrated into PTERA C3 testbed in preparation for flight test
• Sensors were integrated and software developed to accurately control CC system.
• Bench tests of CC system were carried out to characterize the flow and overall system performance. These tests exceeded predicted performance and helped identify parameters that will be used in the development of CC system control algorithms, simulation models, and CC aircraft control algorithms.
• A 6 DOF flight simulation of PTERA BL and PTERA C3 was developed for eventual release to CC researchers.
• Began technical report on CC system, aircraft modifications and testing.
Distribution/Dissemination

• Have had discussions and provided copies of the 6 month report to interested NASA personnel and industry representatives including:
 - Nhan Nguyen (Associate Technical Lead Aerodynamic Efficiency)
 - Robert Navaro (NASA DFRC Project Manager Aerosciences)
 - Gary Martin (NASA DFRC Project Manager Fixed Wing)
 - John Bosworth (NASA DFRC PI Fixed Wing)
 - Starr Ginn (NASA DFRC ARMD Chief Engineer)
 - James H. Mabe (Associate Tech Fellow Boeing Research and Technology)

• ARMD Seedling Fund Kickoff meeting at NASA Ames to discuss research effort and tie in to related projects such as AMELIA.

• Presented at the 2013 International Powered Lift Conference in Los Angeles California

• AIAA Paper on Phase 1 work to presented at a future AIAA Circulation Control or Flight Controls Conference
Next Steps

• Phase II Proposal with expertise from NASA, Georgia Tech Research Institute (GTRI), Boeing and Middle Georgia College will raise CESTOL TRL by:
 ➢ Utilizing Phase 1 ground test data to refine simulator models
 ➢ Use updated simulator to develop aircraft control laws and control circulation control system
 ➢ Hardware in the loop tests and additional flight test preparation
 ➢ Flight tests of CESTOL system including PID test points and analysis

• Further development of PTERA C3 aircraft to test other Circulation Control research technologies