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Innovations

Shape-Memory Alloys represent solid state actuation

— High work output in a small volume

High-Temperature Shape-Memory Alloys (HTSMAS)

— Extend the range of transformation temperatures > 100C
— Above the limit of commercial alloys: < 90C

Single-crystals allow measurement of orientation specific mechanical
behavior of materials

— Different orientations have different behaviors
— High transformation strain -> high work at low(er) stress

— Extreme stress capability -> high work output while maximizing
compactness



NASA Aeronautics Research Institute

Heating Cooling

Wire Contracts Wire Extends

i i Cooling Curve
=" —— > \\r

Current

Current
Current

0
e 2 B

True Strain (%)

/ﬁ Heating Curve

Permanent Deformation

- Unrecovered Strain

Transformation
Strain

Ms Af

Shape Memory Alloy Wire Actuator

Load biased shape-memory behavior

Measure strain vs temperature as a function of load:

a)Transformation Temps M, M_, A_, A;
b)Transformation Strain -> Work Output
c3)Unrecovered Strain -> Dimensional Stability

Temperature (°C)

=f0d5




Advantages of SMA-Based
Actuation Systems
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» High force (per volume/weight)

» Compact ‘ Qg

» Easlily integrated on existing

Gear box :

Motor: in-Ibs
SyStemS Torque 66 in-lbs 1:2 |bI:
> Eliminates extraneous systems 25 Ibs

* hydraulics, pneumatics, mechanical

» Robust
> Simple, frictionless, quiet
> Low Maintenance

SMA Rotary Actuator :
150 in-lbs

1 lbs
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IDEAL FOR HIGH FORCE, LARGE STROKE, LOW CYCLE
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High Temperature
Shape Memory
Alloys Enable the
Development
Adaptive
Structures
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GRC High-Temperature Shape-
Memory Alloy Development
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» Give us ability to
taillor material
properties 4: ............................. _
» Larger stroke asf Bridgeman [110] NITIHt
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Goals

* Develop infrastructure to grow single-crystals in-
nouse at GRC

 Demonstrate ability to grow single-crystal high-
temperature shape-memory alloys (NiTiHf)

— Ability to control crystal size

 Demonstrate ability to tailor mechanical properties
via orientation control



Technical Approach

* Modify GRC s Czochralski (CZ) furnace to grow
single-crystal or highly-oriented directionally
solidified crystals

— Czochralski process allows for diameter control

— Tri-arc unit removes the need for graphite crucible
as is required for Bridgeman growth

* Produce large diameter samples using CZ

* Model transformation strain capability of
different orientations



Technical Approach

* Microstructural analysis
— Are multiple grains present
— How did they grow — link to process parameters if
possible

e X-ray diffraction to determine orientation of
grains

* Mechanical testing to determine

— Load-biased shape-memory behavior —
transformation strain, temperature, unrecovered
strain, work output
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Single Crystal Growth Methods
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* Bridgeman Method Czochralski Method

a)
Multizone N
furnace Furnace
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Crucible holder (graphite)
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*Springer Handbook of Crystal Growth, (2010) Springer-Verlag, Berlin Heidelberg, p288



%y GRC’ s Tri-Arc Czochralski Furnace
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Mechanisms Investigated
for Initiating Crystal Growth

e Solidification of melt onto pull rod occurs by
nucleation and growth:

— W pull rods — Used because of high melting point,
good thermal conductivity
* End shapes — flat, pointed, and cavity

* Or by templating onto pre-existing grains of
the same composition
— NiTiHf polycrystalline pull rods
» Shapes - flat, pointed, pointed offset

— NiTiHf single crystal seed
* Preferred method
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NiTiHf Sample

* Grains nucleate on end of pull rod
— Preferentially oriented grains grow along growth
axis
— Pull rod shape does not aid in grain elimination
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Flat Tungsten Pull Rod
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Growth Direction T
* NiTiHf liquid
wicks up on

W pull rod
| A4
W pull rod Pull rod/melt NiTiHf sample
/ interface
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e

N Tungsten Pull Rod - Pointed

N.

Grains
nucleate on
sides and tip

— Growth along
maximum
thermal
gradient

— Grain
elimination
by
divergence
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%% Tungsten Pull Rod with Point
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Growth Direction
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| NiTiHf sample |
W pull rod Solidified melt
with point pool
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Tungsten Pull Rod - Cavity

cs Research, Instifufe. e 1

* Grains nucleate on
interior surface of
cavity
— Grains from interior

surface converge on
core and extinguish

— Causes grain

elimination similar to
necking

.

NiTiHf Sample
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NA% Tungsten Pull Rod with Cavity

 Sample diameter
controlled by
withdrawal speed
and/or melt
temperature
(amperage)

— Used to form neck
and shoulder/body

Pull rod/melt NiTiHf sample
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Nm NiTiHf Polycrystalline Pull Rods
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Flat end

— Multiple grains at
interface

INCHES

ml;u“|Ii[il}}llHIIIHIIHIHWH( I /HW /f“(”l P i d d
A e Pointed en

— Minimize number of
grains for templating

. » Offset point

— Minimize grains for
templating

— Cause sideways
growth
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NiTiHf Single Crystal Seed

P PTR !

| * Preferred method
— (Assuming single-crystal seed)

* Begin with one grain
— End with one grain (hopefully)

* |nitial trial with single-crystal

seed
L CPASE — Grown using [001] seed
NASA i
Glenn Research Center ° WI” US€E as [340] SQEd
(|) | 1| | T , i — Grow off of face
cm
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X-Ray Diffraction (XRD) Setup
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NiTiHf XRD Results (Pole Figures)

| \"» Results from NiTiHf Single
W Crystal Seed [001]
é’%?‘* w0 _ Few Subgrains within 5°of the
| | [100] direction
. _;j — Average subgrain size = 280um

Polycrystalline pull rod

-.:-21‘0° — Several grains/subgrains within
[ 15°0f the [100] direction

N Average grain/subgrain size =

'W * Results from NiTiHf

5 S |
160um
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NiTiHf Transformation Modeling
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Transformation calculation Theoretical Recoverable Transformation
between B2 and single

variant of orthorhombic

B19 martensite

(a) Parent B2 c t[001],

/shuffle
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Transformation Strain

Tension Compression Shear

Table of recoverable strain in compression

J [001] 1.72 0.67
\ —
- . “anll!10; = 110] 9.36 3.34
bBl9”[1 lO]BZ
[111] 7.19 2.60
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Compression samples machined to ~ 1:2
diameter to length ratio and sized depending on

' Reverse load tensile/
compression samples
machined with 5mm
dia x 14mm long
gage
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Stress-strain comparison — polycrystalline
vs highly oriented [100] samples
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Transformation Strain in Compression
GRC CZ Samles
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ws Work Output In Compression
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* Highly stable
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Remainder of Phase |l

e X-ray in progress to confirm orientation and
qguality of crystals, ie low angle boundaries

 Mechanical testing of remaining crystals
— NiTiHf seeded crystals — [001] and [340] orientations
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Payoffs/Impact of Innovation

* Highly oriented samples behave like single

crystals

— Easier to manufacture — may improve
commercial viability

* Tailorable properties
— Very high force (stresses to 1.5GPa or more)
— High displacement (transformation strain)
— Hybrid properties

* Properties unobtainable in polycrystalline
materials
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Plans for Dissemination

* Patent application on rotating hearth/collar

e Paper on NiTiHf single-crystals incorporating
modeling data
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Next Steps

* Can be transitioned into projects for aeronautics,
space, resource collection, and resource utilization

— High force and/or strain useful for applications where
extreme high stress needed

— Will be utilized in a recently won CIF project
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