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Versatile Experimental Autonomy Research Aircraft Technology (VEARAT) 
PI: S. Joshi, NextGen Aeronautics 

Co-Investigators: R. Kapania, Virginia Tech;  
G. Chowdhary, University of Illinois Urbana-Champaign 

 
ABSTRACT 

The Versatile Experimental Autonomy Research Aircraft Technology (VEARAT) program is 
envisioned to develop system architectures and technologies that would enable VEARAT UAV 
to easily integrate, verify, and validate rapidly evolving hardware and software subsystems for 
autonomous flight. Our approach to materialize program goals is to initiate development based 
on an existing technology demonstrator to reduce cost of development and prototype 
construction. It is a UAV designed, fabricated and tested by NextGen Aeronautics. The 
VEARAT UAV will allow nontraditional technologies such as open-source software and 
consumer electronics products from autonomy experimentalists to be tested with minimum risk 
by the switchable robust base system taking over control from nontraditional technologies being 
tested when it demonstrates spurious behavior. The VEARAT program focused on several 
design improvements that have potential to transform the existing flight tested UAV into a 
complete system for autonomy research. Design improvements are made to increase endurance 
to more than six hours to provide experimental autonomy research utility at reasonable cost. 
Subsystems include BLOS communication, detect and avoid sensor systems and hazardous 
weather avoidance. The autopilot is capable of autonomous takeoff, flight, and landing. 
The VEARAT UAV design includes efficient engine, increased propeller diameter and structural 
weight optimization. Autopilot with modularized subsystems with “Plug-and-Play” logic for 
switching subsystems with units supplied by experimenter, and multiple communication 
channels. GNC software is multi-threaded and includes deterministic and non-deterministic 
hierarchical and adaptive baseline algorithms. Software by experimenter can be uploaded and 
modified in real-time during HIL ground and flight testing while aircraft is autonomously flown 
by baseline autopilot. The proposed autopilot system also allows SIL inflight forward 
predictions. 
NextGen Aeronautics, working cooperatively with NASA, can provide versatile experimental 
autonomy research UAV(s) available to the research community at a fraction of the cost needed 
for autonomy hardware/software verification and validation. 
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1 INTRODUCTION 
The National Research Council’s report [1] described the contributions that advances in 
autonomy could make towards civil aviation, identified key barriers to implementation, and 
provided a national research agenda for enabling the introduction of autonomy into civil aviation. 
This report identified the following substantial barriers to the increased use of autonomy in civil 
aviation systems and aircraft: 
• Technology Barriers 

− Communications and data acquisition 

− Cyberphysical security 

− Decision making by adaptive/nondeterministic systems 

− Diversity of aircraft 

− Human–machine integration 

− Sensing, perception, and cognition 

− System complexity and resilience 

− Verification and validation 

• Regulation and Certification Barriers 

− Airspace access for unmanned aircraft 

− Certification process 

− Equivalent level of safety 

− Trust in adaptive/nondeterministic IA systems 

• Additional Barriers 

− Legal issues 

− Social issues 

The Versatile Experimental Autonomy Research Aircraft Technology (VEARAT) program was 
envisioned under the NASA LEARN2 project for developing system architectures and 
technologies that would enable experimental autonomous unmanned aircraft to easily integrate, 
verify and validate rapidly evolving hardware and software subsystems. Our approach to 
materialize NASA LEARN2 goals is to initiate development based on an appropriate technology 
demonstrator. An unmanned aerial vehicle (UAV) designed, fabricated and tested by NextGen 
named BASSET (Big Antenna Small Structure Enhanced Tactical) UAV was developed under 
an Air Force program (Contract No. FA8650-08-C-3845). NextGen’s intent is to allow 
nontraditional technologies such as open-source software and consumer electronics products 
from an autonomy experimentalist to be tested with minimum risk by the robust base system 
taking over control from adaptive non-deterministic third party systems when needed. 
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• The BASSET aircraft stands as a capable, portable, platform with significant payload 
carrying capability. 

The VEARAT program focused on several design improvements that have potential to transform 
the BASSET UAV into a complete system for autonomy research: 

1. INCREASED ENDURANCE: An endurance of 6+ hrs with a payload capacity of 
between 50 to 100 lbs has been achieved to provide experimental autonomy research 
utility at reasonable cost.  

2. BEYOND LINE OF SIGHT (BLOS) COMMUNICATIONS: This can be accomplished 
with the proposed GNC system, leveraging cellular networks or radios in the VHF band 
(300 Mhz) 

3. FULLY AUTONOMOUS OPERATIONS: The current system is capable of way-point 
navigation but requires an operator for takeoffs and landings; these can be automated, 
completely removing the pilot from the loop. 

4. COOPERATIVE AND NONCOOPERATIVE VEHICLE AVOIDANCE: This will 
require additional subsystems to be integrated in the UAV. More specifically, we will 
integrate an ADS-B transceiver and K-band radar. 

Section 2 describes methods and procedures used to produce a preliminary design of VEARAT 
vehicle. Results are discussed in Section 3, as well as flight simulations and surrogate vehicle 
flight testing of the autopilot. Conclusions and recommendations are presented in Section 4. 

2 DESIGN MODIFICATIONS 
Our technical approach to complete the design of the VEARAT UAV is to start with the 
BASSET UAV that has been flight tested. We will improve the design for versatility and 
performance using multidisciplinary optimization as well as include an autopilot with capability 
to take inputs from user specified sensors. 
2.1 Propulsion System Improvements 
The propulsion system of BASSET was identified for modification to increase endurance of the 
VEARAT aircraft. As with many aircraft programs, the BASSET development program was 
subjected to feature creep and the result was a suboptimal propulsion system. While take-off and 
climb performance was adequate, fuel consumption of the baseline engine exceeded 
manufacturer’s specifications by a factor of two. Furthermore, test stand versus installed thrust 
testing indicated that prop efficiency suffered because of being occluded by the fuselage. Both of 
these performance deficiencies have been addressed under the LEARN2 program. 
The baseline BASSET engine was a high-end large scale RC hobbyist engine. As such, it lacked 
quality control and end user support that would be typical of any engine used by manned aircraft. 
Power requirements (60 Hp) and weight constraints (200 lbs including 6 hours of fuel) for 
VEARAT are well aligned with ultralight aircraft engines, accordingly the surveyed trade space 
was a range of ultralight aircraft engines. Many of these engines had long records of performance 
and maintenance data, and active user communities supporting their continued use. Table 1 
details the range of engines researched, with the BASSET baseline appearing at the top, and the 
final selection of the HKS 700E at the bottom. 
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Load cases for sizing the aircraft were obtained using ANSYS CFX fluid simulations of the 
BASSET configuration at a design point of 55 knots and 2000 ft. mean sea level (~1000 ft. 
above ground level at McMillan Field). For this design point, an earlier version of the BASSET 
was capable of generating 435 lbs. of lift at an angle of attack (AOA) of 2.9°. Of the 435 lbs., 
86% the wing weight or 375 lbs. is the contribution from the wing and winglets. For one wing 
and winglet pair, this equates to 187.8 lbs. of lift and a root bending moment of 12,094 in-lbs. (at 
vehicle centerline). At 5g limit load, these figures increase to 939 lbs. of lift and 60,471 in-lbs. of 
moment. These loads were supplemented with a safety factor of 1.25. The structure was then 
sized using 3D finite element analysis (FEA) in ANSYS.  
As the vehicle weight increased from 440 lbs. to 650 lbs., a new computational fluid dynamics 
(CFD) simulation was performed to obtain the trim loads. The new loads now set a limit load of 
3.35g to match the overall lift from the previous load case so that the wing can sustain the 
aerodynamics loads. The optimization study will be performed for the updated vehicle weight 
and aerodynamics loads. 
2.2.2 Development of NASTRAN Finite Element Model 
A finite element model (FEM) was developed in NASTRAN based on the CAD model of the 
wing as shown in Figure 6.  

 
Figure 6: CAD Model of BASSET Wing-box 

Certain assumptions were used to develop the FEM. First, only that section of the rib was 
modeled which lied within the wing-box. Secondly, the whole wing-box was modeled using two-
dimensional plate elements (PSHELL) in NASTRAN. Thus, the three-dimensional features of 
the root spar (as shown in Figure 6) could not be captured. Also, the wing was modeled using a 
combination of 4-noded quadrilateral (CQUAD4) and 3-noded (CTRIA3) triangular elements. 
As such, the exact curvilinear shape of the ribs and the holes could not be captured. The skin was 
added to the structure model unlike the CAD model. Also the same Al 7075-T6 as used for the 
rest of the vehicle was used for the skin instead of composites. The wing outer mold line (OML), 
twist and dihedral were captured accurately. The finite element mesh is shown in Figure 7. From 
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Figure 7(a), one can see that polygonal holes with equal area to that of the circular holes were 
used in the FEM. 

  
 (a) (b) 

Figure 7: BASSET Finite Element Mesh (a) Without Skin, (b) With Skin 

The skin thickness distribution, the spar cap, and spar web thickness distributions, were 
considered as the design variables in the optimization study. The skin stiffeners, ribs and rib 
stiffeners were modeled using the baseline thickness. The limitation of a minimum thickness of 
0.04" for the spar caps and 0.03" for other members were maintained. The von Mises stresses on 
the upper and lower surface of each element were considered as the design constraints.  
2.2.3 Optimization of VEARAT 
The VEARAT is a modified version of the BASSET configuration with the tail booms shifted 
14" outboard on each side, the overall wing span increased from 22.7’ to 25’ and the center-body 
extended outboard of the tail booms. While there is no baseline sizing of the VEARAT available, 
the weight reduction of the BASSET structural optimization study motivated an analogous 
design optimization study of the VEARAT configuration. 
2.2.4 Development of NASTRAN Finite Element Model 
The VEARAT NASTRAN FEM was developed in an analogous way to the BASSET. The CAD 
model of the half-span VEARAT is shown in Figure 8. It shows that the spars in the VEARAT 
do not end in a plug receptacle in the fuselage but is instead carried through. Thus, the wing is a 
continuous member through the fuselage. The present study will focus on the structural aspects 
of the half-span only since we are looking at symmetric load cases. 

 
Figure 8: CAD Model of VEARAT 
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All the wing-box members were modeled using CQAUD4 or CTRIA3 PSHELLs available in 
NASTRAN. Thus, curvilinear nature of the ribs and the holes could only be approximated as 
rectangular sections. The finite element mesh of VEARAT configurations with and without the 
skins is shown in Figure 9. Fixed boundary condition was applied to all the nodes which lied 
inside the fuselage and was connected to the bulkhead. The boundary conditions are shown in 
Figure 10. 

 
Figure 9: FEM of VEARAT 

 
Figure 10: Boundary Conditions of VEARAT 

2.3 Manufacturing of VEARAT 
Because the BASSET flight vehicle has already been manufactured and flight-tested the tooling 
and molds for the aircraft currently exist. Special care was taken during the development of the 
VEARAT design to ensure that minimal impact is made to preexisting tooling to minimize non-
recurrent manufacturing costs. The main areas of change with regard to aircraft OML are the 
wing and horizontal tail areas. The extensions to both of these areas were done to accommodate 
the larger propeller chosen for VEARAT. The major impact to manufacturing these areas is in 
the molds for the carbon fiber skins. Specifically the molds will not have to be completely 
remanufactured, but instead the design allows for additions to the molds to build up the longer 
wing and horizontal tail sections. This will dramatically reduce the cost associated with retooling 
by not creating all new molds. The molds can be seen in Figure 11. 
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Figure 11: Original BASSET Molds 

2.4 GNC Approach  
2.4.1 Hardware Design 
The design and development of the autopilot uses a new approach by modularizing the 
subsystems in the autopilot. Using the process, the system can be prevented by becoming 
obsolete with the advancements in technology. Being modular helps in the development of the 
autopilot to be mission specific as well. Furthermore, any faulty subsystems can be easily 
replaced individually without affecting the whole system. 
The components that were chosen to feature modularity are:  

• Flight Control Computer 

• Inertial Navigation System (INS) 

• Wireless Ground Control Communications 
When selecting the components for aerospace design, the form factor, the weight and the power 
consumption of all the components play a major role. Figure 12 shows the various components 
and their communication protocols. 
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Figure 12: Block Diagram showing Modules of the Autopilot 

Modular Components 

Flight Control Computer: The flight control computer handles all the operations such as 
interacting with all the components on-board the aircraft, as well as communicating with the 
ground control station. Its primary functions include: 

• Analyzing the data received from the onboard 
sensors. 

• Executing the flight controls 
• Communicating with the Ground Control 

Station 
• Logging flight data for post-flight analysis 

Special attention was needed with considering the size, 
weight, power consumption and I/O ports 
configuration. The suitable choice was the BeagleBone Black, an embedded computer board 
(Figure 13). 
The BeagleBone Black features: 

• Sitara AM3358 1Ghz ARM \textregistered - A8 32-Bit Processor  

• 512 MB DDR3 RAM 

• 4GB 8-bit eMMC on-board flash storage 

• 2x PRU 32-bit microcontrollers 
Usually, the autopilots are designed and developed around the selection of the central computer. 
But in our approach to the design of the autopilot, the flight control computer is also modular 

Figure 13: BeagleBone Black 
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execute the threads, the main() function is initialized with several parameters such as the system 
gains, actuator limits and sensor profiles. In a multi-threaded system, the tasks for each thread 
must be scheduled such that the control is executed properly, as shown in Figure 18. 

 
Figure 18: Block Diagram of Thread Design 

Ground Control Station Software: The Ground Control Station plays the primary role as the 
means by which operators plan, execute and monitor UAS missions through a wireless 
communication channel. The task of the ground station is to provide a realistic interface for users 
to monitor the performance of the UAV during the flight tests. Many ground control software 
platforms exist but QGROUNDCONTROL(QGC) is a well-documented, platform independent 
and community supported ground station software package. QGC software is compatible with 
the major Operating Systems (Windows, Linux, Mac OS X). It also features serial, UDP, TCP 
and mesh networks communication compatibility. It also has real-time plotting and logging 
capabilities of onboard parameters. It also features the ability to change onboard parameters 
relevant for the Control law. QGC utilizes a highly efficient communication protocol called 
MAVLINK. MAVLINK is an extensively tested and possibly the most widely used 
communication protocol in the UAS research community.      
2.4.3 GNC Test Aircraft 
The SkyHunter (Figure 19) was used as the primary experimental fixed wing platform. The 
platform is a COTS boom-tail design constructed of though Expanded PolyOlefin (EPO), a good 
payload bay capable of housing 7 lbs. The high wing design adds a significant amount of 
stability and robustness in the presence of wind. The aircraft features ailerons and an elevator as 
control inputs, but no rudder. Other specifications are also provided in Figure 19. 
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specifically how they could affect the vehicle Xcg, we will proceed with this configuration. 
When a more concrete definition of the payload and overall vehicle inertial properties is 
available, we can simply adjust the length of the tail booms to achieve the desired stability and 
optimum trim point.     

 
Figure 26: Pitching Moment vs. Lift Coefficient – BASSET vs. VEARAT  

3.2 Structural Optimization 
3.2.1 Applied Load Distribution for BASSET NASTRAN Wing-box Model 
Detailed CFX ANSYS results were post-processed to obtain point loads at various sections along 
the span. These point loads matched the total lift and moments of the detailed CFD model. 
However, application of point loads led to stress concentration along the span. Thus, an 
equivalent pressure distribution was developed for the wing-box region of the upper and lower 
skin which could match the force and moments experienced by the wing-box due to the CFD 
pressure distribution shown in Figure 27. This led to much more uniform application of applied 
loads and avoided erroneous local stresses.  
The wing-box skin lied between 15% (front spar) to 70% (rear spar) of the wing and thus forms 
55% of the total wing area. The pressure distribution in this region was matched to generate 55% 
of the total wing lift obtained from CFD and also match the location of the center of pressure 
obtained from the CFD analysis to ensure accurate pitching moments. Half-span lift for a 3.35 g 
load case from the adjusted pressure distribution amounted to 768.57 lbf. The lift for the 
equivalent region obtained from the FD analysis amounted to 757 lbf. The validation is shown 
for one test section along the span marked with an arrow in Figure 27. The center of pressure 
obtained from the CFD results at the test section is shown in Figure 28. This can be compared to 
the location of center of pressure along the span shown in Figure 29 as obtained from the 
adjusted pressure distribution. 
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Figure 27: CFD Pressure Distribution 

 
Figure 28: Pressure Distribution at Test Section 

 
Figure 29: Location of Center of Pressure along the Span 
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The matched pressure distribution was applied to the NASTRAN skin elements. The forces at 
the winglet were applied as point forces distributed over the outboard section where the wing is 
connected to the winglets. Point masses due to the winglet and the outboard aileron were 
modeled with CONM2 elements in NASTRAN. These point masses as well as the mass of the 
structure, were factored with the corresponding acceleration for the load case via the GRAV card 
in NASTRAN which can incorporate the acceleration in terms of g. The applied forces are 
shown in Figure 30. Fixed boundary conditions were applied at the location where the wing spars 
enter the bulkhead receptacle.  

 
Figure 30: Applied Forces 

3.2.2 BASSET Wing Optimization Results 
The design optimization study was performed using the SOL 200 module in NASTRAN. The 
SOL 200 uses a gradient-based optimizer IPOPT. IPOPT implements an interior point line search 
filter method to find a local optimum for large scale nonlinear optimization. 
The load case was 3.35g pull-up case for which the aerodynamic forces were obtained from the 
CFD analysis. The existing BASSET vehicle was used as a baseline for comparison of the 
optimized weight. The optimization results are shown in Figure 31. The optimized wing-box 
weighed 16.33 lbs., which is 55% lower than the baseline weight. The constraint satisfaction 
used the following equation for computing the constraint, ࢚࢔࢏ࢇ࢚࢙࢘࢔࢕ࢉ = ሺ࢙࢙࢜ࢋ࢚࢙࢘ ࢙ࢋ࢙࢏ࡹ ࢔࢕ × ࢘࢕࢚ࢉࢇࢌ ࢚࢟ࢋࢌࢇ࢙ −  ࢎ࢚ࢍ࢔ࢋ࢚࢙࢘ ࢊ࢒ࢋ࢏࢟/ሻࢎ࢚ࢍ࢔ࢋ࢚࢙࢘ ࢊ࢒ࢋ࢏࢟ 
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Figure 31: BASSET Optimization Results for 3.35 g Load Case 

The stress distribution at various stages of the optimization process is shown in Figure 32. The 
stress initially increases locally and often reaches beyond the allowable stress as the optimizer 
tries to reduce the structural weight by reducing the thickness of the designed members. This is 
reflected by an increase in constraint violation in Figure 31. However, eventually an optimum 
solution is reached where the von Mises stress constraint is satisfied. The constraint activity is 
shown in Figure 33. One can see that the constraints are active mainly in the root spar where the 
structure is subjected to the maximum bending and shear stresses. 

 
Figure 32: Stress Distribution: BASSET Optimization for 3.35 g Load Case 
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Figure 33: Constraint Activity - BASSET Optimization for 3.35 g Load Case 

The thickness distribution along the span for the various designed members is shown in Figure 
34. The thickness decreases along the span starting from the root as a result of the reduced 
bending and shear stresses. The increase in thickness again at the tip is due to the local stresses 
generated by the forces from the winglet. From Table 3, one can see that the weight for each 
section reduced significantly resulting in an overall reduction of 55% of the wing-box weight of 
the baseline vehicle. The only increase in weight is observed in the skin. However, this is mainly 
due to replacing the composite skin by an aluminum skin for the design optimization study. 
Replacement of the present skin by a composite skin is expected to further reduce the weight of 
the wing-box. 

 
Figure 34: BASSET Optimized Thickness Distribution, 3.35 g Load Case 
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Table 3: Comparison of Member Weight 

Member weight Baseline Optimized % Change
Front spar (lbs.) 14.861 3.6133 -75.686 
Rear spar (lbs.) 7.159 2.7635 -61.398 

Skin (lbs.) 6.035 (composite) 7.1000 (Al 7075-T6) 17.644 
Ribs (lbs.) 8.303 2.8858 -65.569 
Total (lbs.) 36.258 16.3356 -55.07 

Another design optimization was conducted to observe the effects of performing a more 
aggressive maneuver with the present BASSET vehicle. This load case is a 5 g pull-up 
maneuver. The aerodynamic loads as well as the inertia loads were scaled accordingly and the 
design optimization study was conducted. The optimization results are compared to the 3.5 g 
case design optimization in Figure 35. The results showed that inclusion of the aggressive pull-
up resulted in only a 5% increase in the weight of the wing-box and the overall weight of the 
wing-box was still 50% lower than the baseline weight.  

 
Figure 35: Comparison of BASSET Optimized Results, 3.35 g and 5 g 

A buckling check was also performed as a part of post-optimization analysis, and the design was 
found to be safe from buckling. 
3.2.3 Applied Loads on VEARAT 
The CFD pressure distribution of the upper and lower skin of the VEARAT configurations is 
shown in Figure 36. As explained earlier, the pressure distribution on the PSHELL elements of 
the FEM is adjusted from 55% of the overall lift of the CFD pressure distribution and also 
matches the location of the center of pressure along the span. The adjusted pressure distribution 
formed an overall lift of 1058 lbs. compared to the 1100 lbs. lift due to CFD pressure 
distribution. The adjusted pressure distribution on the upper skin, lower skin and the location of 
the center of pressure along the span is shown in Figure 37, Figure 38, and Figure 39 
respectively. 
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Figure 36: CFD Pressure Distribution on Upper and Lower Skins 

 

 
Figure 37: Adjusted Pressure Distribution on the Upper Skin 
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Figure 38: Adjusted Pressure Distribution on the Lower Skin 

 

 
Figure 39: Location of Center of Pressure along the Span 

The mass of the structure along with those of the ailerons are factored with the acceleration of 
vehicle to form the inertia forces. Another force that has been considered here are the forces 
coming from the tail via the tail booms during a dive condition. These are shown by the yellow 
point forces at the inboard trailing edge in Figure 40. These forces are grouped in a separate load 
case to be used for the optimization of the vehicle.  
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Figure 40: Applied Loads on VEARAT FEM 

3.2.4 VEARAT Wing Optimization Results 
For a better understanding of the physics, we look at the stress distribution of Case 2 for the 
individual load cases during several cycles of the optimization. Two load subcases are 
considered: 
Load Subcase 1 – Aero loads for 3 g pull-up + inertia loads due to structural weight, aileron 
weight (Figure 41) 
Load Subcase 2 – Same as before + max Q dive case (tail loads transferred to wing) (Figure 42) 
The optimization was performed for two subcases. One can see that for Load Subcase 1, the 
higher von Mises stresses are observed at the root spar, with the highest being at the forward 
spar. However, the stress distribution does not change much after iteration 4. This is expected as 
the Load Subcase 1 by itself requires 3 cycles of optimization as shown by Subcase 1 from 
Figure 43. For Load Subcase 2, several iterations are required to satisfy the stress constraint at 
the tail boom-wing intersection due to the tail loads. This explains the much higher number of 
cycles required for Subcase 2 to converge. The results for the optimization are shown in Figure 
43 for both the cases. 

 
Figure 41: Stress Distribution - Load 2, Load Subcase 1 
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Figure 42: Stress Distribution - Load 2, Load Subcase 2 

 

 
Figure 43: VEARAT Structural Optimization Results 
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Looking at the thickness distribution of the various spar sections along the span in Figure 44, it is 
evident that the thickness of the rear spar caps and especially the rear spar web at the intersection 
of the tail boom and the wing are increased to carry the tail loading. This explains for the 0.25 
lbs. increase in the wing weight for Subcase 2. 

 
 (a) (b) 

Figure 44: VEARAT Load Case 2 Optimized Member Thickness (a) Spar Cap and (b) Spar Web 

3.2.5 FEM Optimization Conclusions 
The study aimed to reduce the weight of the structural wing-box BASSET UAV via 
optimization. First, the BASSET configurations were studied and a NASTRAN FEM was 
developed based on the CAD model. Then, adjusted pressure distribution for the FEM was 
developed based on the CFD results for the BASSET configurations. Subsequent optimization 
studies showed that 55% of the wing-box weight could be saved via structural optimization. 
Even an aggressive 5 g load case required almost 45% lower weight than the baseline design.  
A similar optimization study performed for the refined VEARAT configurations predicted 
similar wing-box weights for the optimized design. However, inclusion of a load case which 
applied the tail loads during dive into the optimization led to a small increment in the structural 
weight owing to the thickening of the spar web and the spar caps at the intersection of the tail 
boom and the wing. 
Future studies recommended for this project would be investigation of the wing-box structural 
response in presence of gust loads, and optimal mass placement in presence of strong gusts.  
3.2.6 CAD Modeling of FEM Optimized Wing Structure 
The result of the FEM optimization of the wing structure results in new shell element thickness 
for the skins, spars, ribs, and stiffeners. The FEM is a simplification of the actual wing structure 
that does not include the additional details required for manufacture. To determine the actual 
weight and mass distribution of the optimized wing structure the new element thickness were 
used to model in SolidWorks the full wing assembly. The result of this wing modeling is shown 
in Figure 45. 
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Figure 45: Detail Designed Optimized VEARAT Wing Structure 

The wing structure shown in Figure 45 is based on the optimized FEM models but includes the 
additional features such as ailerons, lap joints, fillets, and stiffeners required to manufacture an 
actual wing. The wing CAD model was cut into a number of smaller sub pieces for which the 
mass and inertia properties were extracted. The mass distribution is shown in Table 4 and the 
location points are shown in Figure 46. These distributed masses could be used in the future to 
conduct gust load analyses. 

Table 4: Mass Distribution of Detail Designed Optimized VEARAT Wing Structure 

 

# X Y Z Mass 
[lb]

1 -7.2 4.3 88.2 2.66 Lxx = 27.749 Lxy = 7.541 Lxz = -0.047 Lyx = 7.541 Lyy = 23.945 Lyz = 0.014 Lzx = -0.047 Lzy = 0.014 Lzz = 51.513
2 -7.0 3.2 105.4 2.02 Lxx = 12.150 Lxy = 4.311 Lxz = 0.156 Lyx = 4.311 Lyy = 15.371 Lyz = 0.005 Lzx = 0.156 Lzy = 0.005 Lzz = 27.433
3 -23.7 0.5 83.3 0.71 Lxx = 7.978 Lxy = 0.301 Lxz = -1.325 Lyx = 0.301 Lyy = 13.664 Lyz = 0.491 Lzx = -1.325 Lzy = 0.491 Lzz = 11.426
4 -20.9 1.2 96.3 4.18 Lxx = 213.535 Lxy = 2.360 Lxz = -3.412 Lyx = 2.360 Lyy = 268.010 Lyz = -0.120 Lzx = -3.412 Lzy = -0.120 Lzz = 93.985
5 -24.0 -0.3 114.7 1.38 Lxx = 41.987 Lxy = 0.123 Lxz = 1.199 Lyx = 0.123 Lyy = 55.357 Lyz = -6.392 Lzx = 1.199 Lzy = -6.392 Lzz = 20.414
6 -37.1 0.0 85.9 0.80 Lxx = 4.267 Lxy = 0.406 Lxz = -2.930 Lyx = 0.406 Lyy = 15.083 Lyz = 0.172 Lzx = -2.930 Lzy = 0.172 Lzz = 13.860
7 -38.2 0.3 97.1 9.65 Lxx = 571.443 Lxy = -0.484 Lxz = -5.287 Lyx = -0.484 Lyy = 640.267 Lyz = 12.323 Lzx = -5.287 Lzy = 12.323 Lzz = 109.681
8 -36.2 -0.8 114.3 3.59 Lxx = 113.573 Lxy = -2.157 Lxz = 7.144 Lyx = -2.157 Lyy = 137.827 Lyz = -6.704 Lzx = 7.144 Lzy = -6.704 Lzz = 46.687
9 -49.8 -0.4 89.2 0.39 Lxx = 1.767 Lxy = 0.133 Lxz = -1.703 Lyx = 0.133 Lyy = 6.725 Lyz = 0.051 Lzx = -1.703 Lzy = 0.051 Lzz = 6.188

10 -49.8 0.2 99.6 1.20 Lxx = 80.418 Lxy = 0.850 Lxz = -6.953 Lyx = 0.850 Lyy = 100.521 Lyz = 1.397 Lzx = -6.953 Lzy = 1.397 Lzz = 34.348
11 -49.7 -0.6 114.9 1.14 Lxx = 20.692 Lxy = 0.360 Lxz = -2.304 Lyx = 0.360 Lyy = 35.400 Lyz = -2.886 Lzx = -2.304 Lzy = -2.886 Lzz = 17.975
12 -63.7 -0.7 93.6 0.52 Lxx = 2.240 Lxy = 0.140 Lxz = -2.127 Lyx = 0.140 Lyy = 8.019 Lyz = 0.073 Lzx = -2.127 Lzy = 0.073 Lzz = 7.074
13 -63.9 -0.2 103.1 2.95 Lxx = 105.209 Lxy = 1.026 Lxz = -8.106 Lyx = 1.026 Lyy = 133.326 Lyz = 1.507 Lzx = -8.106 Lzy = 1.507 Lzz = 41.208
14 -63.7 -0.9 116.9 1.38 Lxx = 17.335 Lxy = 0.398 Lxz = -2.147 Lyx = 0.398 Lyy = 33.648 Lyz = -2.303 Lzx = -2.147 Lzy = -2.303 Lzz = 18.929
15 -76.0 -1.0 97.2 0.38 Lxx = 1.583 Lxy = 0.128 Lxz = -1.665 Lyx = 0.128 Lyy = 6.561 Lyz = 0.047 Lzx = -1.665 Lzy = 0.047 Lzz = 5.893
16 -75.9 -0.5 106.3 1.70 Lxx = 49.537 Lxy = 0.615 Lxz = -6.043 Lyx = 0.615 Lyy = 69.414 Lyz = 0.558 Lzx = -6.043 Lzy = 0.558 Lzz = 27.390
17 -75.9 -1.1 118.8 0.94 Lxx = 8.989 Lxy = 0.237 Lxz = -1.858 Lyx = 0.237 Lyy = 21.579 Lyz = -1.151 Lzx = -1.858 Lzy = -1.151 Lzz = 13.897
18 -89.8 -1.3 101.5 0.51 Lxx = 1.971 Lxy = 0.127 Lxz = -1.919 Lyx = 0.127 Lyy = 7.407 Lyz = 0.075 Lzx = -1.919 Lzy = 0.075 Lzz = 6.419
19 -89.8 -0.9 109.7 2.43 Lxx = 59.721 Lxy = 0.694 Lxz = -6.487 Lyx = 0.694 Lyy = 84.090 Lyz = 0.687 Lzx = -6.487 Lzy = 0.687 Lzz = 31.272
20 -89.1 -1.3 120.4 0.82 Lxx = 5.696 Lxy = 0.144 Lxz = -1.242 Lyx = 0.144 Lyy = 16.579 Lyz = -0.705 Lzx = -1.242 Lzy = -0.705 Lzz = 11.717
21 -102.3 -1.6 105.3 0.38 Lxx = 1.472 Lxy = 0.122 Lxz = -1.644 Lyx = 0.122 Lyy = 6.487 Lyz = 0.049 Lzx = -1.644 Lzy = 0.049 Lzz = 5.737
22 -102.2 -1.1 113.0 1.44 Lxx = 28.285 Lxy = 0.445 Lxz = -4.992 Lyx = 0.445 Lyy = 45.898 Lyz = 0.289 Lzx = -4.992 Lzy = 0.289 Lzz = 21.642
23 -102.0 -1.6 122.4 0.62 Lxx = 2.782 Lxy = 0.137 Lxz = -1.230 Lyx = 0.137 Lyy = 11.418 Lyz = -0.342 Lzx = -1.230 Lzy = -0.342 Lzz = 9.058
24 -116.9 -1.9 109.8 0.49 Lxx = 2.128 Lxy = 0.162 Lxz = -2.788 Lyx = 0.162 Lyy = 10.143 Lyz = 0.067 Lzx = -2.788 Lzy = 0.067 Lzz = 8.800
25 -117.2 -1.5 116.6 1.95 Lxx = 29.837 Lxy = 0.810 Lxz = -7.252 Lyx = 0.810 Lyy = 63.706 Lyz = 0.282 Lzx = -7.252 Lzy = 0.282 Lzz = 37.376
26 -115.4 -1.8 124.1 0.57 Lxx = 1.384 Lxy = 0.087 Lxz = -0.815 Lyx = 0.087 Lyy = 8.100 Lyz = -0.167 Lzx = -0.815 Lzy = -0.167 Lzz = 6.934
27 -125.1 -0.9 117.7 2.34 Lxx = 63.063 Lxy = -50.396 Lxz = -44.035 Lyx = -50.396 Lyy = 193.443 Lyz = 16.274 Lzx = -44.035 Lzy = 16.274 Lzz = 181.232

Moments of inertia: ( pounds * square inches ),Taken at the center of mass, aligned with the output coordinate 
system.
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Figure 46: Location of Mass Distribution Points 

3.2.7 VEARAT Mass Savings 
As described in the previous sections, the wing mass calculated by FEM showed a reduction of 
55%, but is not fully representative of the wing if it were manufactured with all the additional 
brackets and fasteners. With the detailed designed CAD model with the actual features ready for 
manufacture, a more accurate analysis of weight savings can be made compared to the originally 
manufactured BASSET wing. The results of the detailed designed wing mass savings are 
presented in Table 5. 

Table 5: Detail Design Wing Structural Weight Savings after Optimization 

 BASSET VEARAT % Savings 
Wing Weight [lb] (both wings) 120.0 68.2 43% 

As described the expected mass savings of a manufactured VEARAT wing is approximately 
43%. This is the result of structural load optimizing and the conversion from a prototype 
manufacturing technique to a quasi-production technique. 
As most of the aircraft was manufactured under similar methods, this amount of weight savings 
can be applied to other areas of the aircraft. The predicted VEARAT aircraft weight is seen in 
Table 6. 

Table 6: Projected VEARAT Structural Weight Savings 

 

 BASSET VEARAT % Savings 
Fuselage weight [lb] 91.6 52.0 43% 
Tail weight [lb] 42.3 24.0 43% 
Landing gear weight [lb] 68.1 38.7 43% 

The predicted VEARAT aircraft structural weight is approximately 139 lbs. The weight saved by 
the reduction of structural mass will be converted to the heavier, more efficient engine as well as 
additional fuel to increase the aircraft endurance. The aircraft endurance results are presented in 
Table 7. 

139.1
Project Total Vehicle Structural Weight Savings [lb]
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Table 7: VEARAT Vehicle Endurance Enhancements 

 
The reduction of aircraft structural mass and the addition of a more fuel-efficient engine has 
resulted in a 6 hour flight endurance, which matches design goals. 
3.3 GNC Flight Test Results 
Primarily we have conducted flight tests to demonstrate the performance of the autopilot with 
three main goals: 

• Stabilized flight 

• Autonomous way point guidance 

• Autonomous landing and takeoff 
To validate the design and test for any potential autopilot software flaws we adopted the testing 
philosophy of flight in simulated environment prior to actual flights. XPlane Simulator by 
Laminar Research is used to simulate aircraft dynamics in order to evaluate the autopilot. The 
following test philosophy is adopted for testing the autopilot system, 

• Software in Loop (SIL) 

• Hardware in Loop 

• Flight tests 
The controller parameters that proved to be successful in simulations are used in flight-testing. 
Although the simulation model was accurate, the learning rate in adaptive loop took some tuning, 
because of clock difference from simulations to flight computer. The following tests were carried 
out and results are presented in the subsequent section of the document. 

• Manual Flight 

• Assistive Stable Flight 
o Onboard Adaptive controller tracks the stick command of pilot and assists pilot in 

achieving stable flight 

• Autonomous Flight  
o Complete autonomous flight with onboard Way-point Guidance Algorithm 

• Stall Recovery 

• Autonomous Landing 
3.3.1 Stable Flights 
Stable flight or Assistive stable flight, tracks the stick command of the pilot and when there are 
no inputs from the pilot, the controllers bring the plane from its current attitude to zero stable 
attitude hold. This mode provides the flexibility to any novice pilot to safely fly the airplane. 
Stable mode is also designed with saturation on the attitude angle and rates the vehicle can 

New Engine Added Mass [lb]
New Fuel Capacity [us Gal]

Flight Time [hr]

86.5
14.3

Endurance Enhancement

6.2
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achieve, thereby limiting the excursion on the performance and facilitating stable and safe flight. 
Figure 47, Figure 48, and Figure 49 show the aircraft performance in stable mode. The roll and 
pitch attitude of the vehicle track the commanded roll and pitch respectively and in absence of 
any command the aircraft is returned to zero attitude hold mode.  

 
Figure 47: Stable Flight, Tracking Performance of Aircraft to Commanded Roll 

 
Figure 48: Stable Flight, Tracking Performance of the Aircraft to Commanded Roll: Post Flight Filtered 

Data 
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Figure 49: Stable Flight, Tracking Performance of the Aircraft to Commanded Pitch:  Post Flight Filtered 

Data 

3.3.2 Autonomous Waypoint Guidance 
In this section, flight test results are presented for aircraft autonomously tracking 8 waypoints 
arranged in a stretched hexagonal pattern. All of the flight tests were performed at OSU’s 
Unmanned Aircraft Flight Station. In Figure 50, the red-dots denote the commanded waypoints, 
the dotted line connecting the dots denotes the path the aircraft is expected to take, except while 
turning at the way points. While turning at the way points, the onboard guidance law smooths the 
trajectory with circles of 80 feet radius. The deviation of the trajectory from the desired 
trajectory is due to heavy cross wind. During the day of flight, the wind disturbances experienced 
on the course ranged between 20 to 30 knots. For an aircraft of the size of SkyHunter with 10lbs 
total weight, 30knots of cross wind is a significant external disturbance. Also, the aircraft flight 
tested is a rudderless plane, hence its heading correction capability in presence of heavy cross 
wind is limited due to actuator deficiency. Yet under a high disturbance scenario, the adaptive 
control performed well and achieved the required stable flight and handling. The aircraft was 
able to achieve the desired waypoint tracking. Figure 50 shows the ground track for the 
autonomous flight in waypoint guidance. Figure 51 and Figure 52 shows the time plot for roll 
and pitch attitude of the vehicle to track the commanded waypoints. 
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Figure 52: Commanded Pitch Attitude Tracking for Autonomous Waypoint Guidance 

To validate and test the waypoint guidance code, the autonomous flight was simulated in the HIL 
setup as well before actual flight test. This flight test in HIL was mostly with ideal condition 
testing. No cross wind simulated, this exercise is done to test the code integrity and controller 
parameters tuning. Figure 53 shows the ground track of the aircraft executing waypoint tracking. 
Figure 54 and Figure 55 show commanded and achieved roll and pitch attitude of vehicle to 
perform the trajectory tracking. Under nominal conditions, the controller is demonstrated to 
achieve very close tracking of the desired trajectory, and flight results shows the robustness of 
the code to unknown extreme disturbance. 

 
Figure 53: Autonomous Waypoint Guidance - STABILIS Autopilot on SkyHunter, HIL Test (No Cross 

Wind) 
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Figure 54: Commanded Roll Attitude Tracking for Autonomous Waypoint Guidance - HIL Test (No Cross 

Wind) 

 
Figure 55: Commanded Pitch Attitude Tracking for Autonomous Waypoint Guidance - HIL Test (No Cross 

Wind) 
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Stall Recovery: A stall recovery maneuver was flight tested, to validate the autopilot capability 
to recover aircraft from extreme flight conditions and achieve a stable flight. The aircraft was 
maneuvered to a high pitch angle achieving high angle of attack at which the aircraft lost lift. At 
this point the UAV motor was also switched off, killing off the thrust. The stable mode of the 
autopilot demonstrated its ability to recover the UAV from stall at zero throttle. Figure 56 and 
Figure 57 show pitch and roll performance in stall recovery.  

 
Figure 56: Stall Recovery Maneuver - UAV Pitch Attitude demonstrating Stall, Loss of Lift and Altitude, and 

Recovery Phase 

 
Figure 57: Roll Attitude of Vehicle while Stall Recovery Maneuver 

3.3.3 Autonomous Landing 
The autonomous landing is one of the flight regimes which require very high collaborative 
maneuvers, control and planning. We have demonstrated the controller capability in autonomous 
landing in mathematical simulation environment (MATLAB) and software in loop simulation 
(XPlane + MATLAB). The adaptive controller is designed to achieve the autonomous landing in 
presence of cross wind ground effect.   
The cross wind causes the aircraft to drift aside leading to heading angle misalignment with the 
runway or even cause sideward drift to miss the runway altogether (Figure 58). The ground 
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effect causes increased lift force and decreased aerodynamic drag (Figure 59). When landing, 
ground effect can give the pilot the feeling as aircraft is "floating" and can cause bumpy touch 
down.  
Landing basically involves three phases: 

• Cruise (Constant Altitude Phase 

• Descent Phase 

• Flare 
o The flare follows the final approach phase and precedes the touchdown and roll-

out phases of landing. In the flare, the nose of the plane is raised, slowing the 
descent rate, and the proper attitude is set for touchdown. 

o At start of flare the throttle is set to minimum. 

 
Figure 58: Cross Wind effects on the Landing of Aircraft 

 
Figure 59: Ground Effect on Landing of Aircraft 
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Figure 62: UAV Achieved Attitude Angles Time Plot while Performing Landing 

 
Figure 63: Landing Trajectory: Initial Condition: Course Angle 80 degrees to North, Landing Orientation: 

0deg North 
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Figure 64: Aircraft Velocities and Attitude Angles in Body Frame, While Executing the Autonomous Landing 

 
Figure 65: Aircraft Time Plot for Position in Landing Approach and Landing Phase 
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Figure 68: SIL Landing Simulations: UAV Attitude Angle and Body Rates Plots 

4 CONCLUSIONS AND RECOMMENDATIONS 
In summary, significant progress has been made on several fronts during this LEARN2 program. 
Key challenges recognized in the proposal have been addressed. The solution framework is 
identified and implemented.  
The newly selected engine provides higher fuel efficiency. The structural weight optimization 
has led to greater predicted aircraft endurance. It is expected that by more than doubling the fuel 
capacity will lead to more than 6 hours flight endurance. This flight duration should allow for 
ample time to complete most payload flight test objectives or complete multiple tests in a single 
flight. 
The study aimed to reduce the weight of the structural wing-box of BASSET unmanned aerial 
vehicles by optimization. First the original BASSET wing configurations was studied. A 
NASTRAN FEM was developed based on the CAD model. Then, adjusted pressure distribution 
for the FEM was developed based on the CFD results for the original BASSET configurations. 
Subsequent optimization studies showed that 55% of the wing-box weight could be saved by 
optimized structure. Even for 5 g load case, almost 45% weight reduction is achieved compared 
to the original design.  
A similar optimization study performed for the VEARAT configurations predicted 
corresponding wing-box weight reduction for the optimized design. However, inclusion of a load 
case which applied the tail loads during dive into the optimization led to a small increment in the 
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structural weight owing to the thickening of the spar web and the spar caps at the intersection of 
the tail boom and the wing. 
Autopilot development and integration has resulted in a custom developed GNC system with 
COTS hardware and open source development software. The GNC system is capable of 
operating the aircraft through the full flight regime. Additionally the GNC system has ample 
power and system inputs to allow third party equipment/software to integrate easily within the 
basset control system. 
Overall, the optimization of the baseline BASSET vehicle and the integration of an improved 
robust control system have created an aircraft uniquely suited to testing and validation of, sensor, 
payloads, actuators, etc. The large internal volume, extensive power capacity, and 6hr flight 
endurance would serve as a simply integrated testbed for aircraft, payload, and software 
developers. 
Future structural optimization studies recommended for this project would be investigation of the 
wing-box structural response in presence of gust loads, and optimal mass placement in presence 
of strong gusts. HIL testing of sensors, actuators and communication systems and SIL testing of 
GNC software for safely integrating third party software and hardware shall be part of the future 
development. 
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NOMENCLATURE 
AOA angle of attack 
BASSET Big Antenna Small Structure Enhanced Tactical 
BLOS Beyond line of sight 
CFD computational fluid dynamics 
COTS commercial off the shelf 
CQUAD4 4-noded quadrilateral 
CTRIA3 3-noded triangular elements 
FEA Finite Element Analysis 
FEM Finite Element Model 
FTS Flight termination system  
GNC guidance, navigation, and control 
HIL Hardware-in-Loop 
INS Inertial Navigation Systems 
KEAS knots equivalent air speed 
L/D lift/drag 
MATLAB mathematical simulation environment 
OML outer mold line 
PSHELL two-dimensional plate elements 
QGC QGROUNDCONTROL 
SIB Systems Integration Board 
SIL Software-in-Loop 
UAV Unmanned Aerial Vehicle 
VEARAT Versatile Experimental Autonomy Research Aircraft Technology 


