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1 Introduction

Turbulence models based on the Reynolds Averaged Navier–Stokes (RANS) equations remain the
workhorse in the computation of high Reynolds number wall-bounded flows. While these models
have proven their utility in an industrial setting, their deficiencies in modeling complex flows is well-
documented. Even the most sophisticated turbulence models invoke radically simplifying assumptions
about the structure of the underlying turbulence. As a result, even if a model is based on physically and
mathematically appealing ideas, the model formulation typically devolves into the calibration of a large
number of free parameters or functions using a small set of canonical problems.

Over the past decade or so, however, our ability to perform detailed high-fidelity computations and
resolved measurements has improved dramatically. At the same time, data science is on the rise because
of improvements in computational power and the increased availability of large data sets. This has
been accompanied by significant improvements in the effectiveness and scalability of data analytics and
machine learning (ML) techniques. Given these advances, we believe that data-driven modeling and
machine learning will play a critical role in improving the understanding and modeling of turbulence.
This was the thesis of the proposal we had submitted to the NASA LEARN program in the summer of
2013.

The vision for Phase I of our effort, which begain in January 2014 was driven by a simple desired
future: can we use vast amounts of data, machine learning techniques, and a detailed understanding of
the physics of turbulence to setup a framework that can lead to better predictive capabilities in future
RANS models? The vision included the delivery of advanced RANS turbulence models not as a set
of equations and pre-specified coefficients (such as what would be found in a typical publication) but,
rather, as a set of equations and software modules that can be coded into and called from existing
and future CFD solvers. While the equations would be fixed, the accompanying software modules
could be updated as additional data becomes available for the data-driven generative process, and could
be particularized for higher accuracy (by selecting appropriate datasets to particular phenomena and
parameter ranges of interest) to specific situations and/or problem domains.

With that in mind, our work in this project was guided by seeking answers to a series of funda-
mental questions including: 1. Is there merit in the idea of marrying Big Data methods and Turbulence
Modeling?

2. What are the best ways to setup well-posed, data-driven-turbulence-modeling problems?
3. What are the most effective ways to use Machine Learning approaches? Are new techniques

necessary to transition from standard classification problems (from web applications) to regression ap-
proaches that are more appropriate to modeling the physical world?

4. Once a model has been learned, how is it best embedded in an existing CFD solver?
5. What are the best learning algorithms that provide the necessary accuracy but, at the same time

lead to convergence of the RANS solver in a reasonable amount of time?
6. What data (and how much data) is needed to improve predictive capabilities? Can different

data sets be used in different modeling situations or must we seek a generic model that is uniformly
applicable to a broad range of problems?

7. What improvements can be shown in a number of flows of interest?
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2 Relevant prior work

With a view towards quantifying model errors, several researchers [1, 2, 3, 4] have used experimental
data to infer model parameters. Cheung et al. [5, 6] employ Bayesian model averaging[7] to calibrate
model coefficients. Edeling et al. [3] use statistical inference on skin-friction and velocity data from
a number of boundary layer experiments to quantify parametric model error. These methods provide
insight into parametric uncertainties and address some of the deficiencies of a priori processing of data.

Dow and Wang [8, 9] made progress towards addressing non-parametric uncertainties by inferring
the spatial structure of the discrepancy in the eddy viscosity coefficient based on a library of direct nu-
merical simulation (DNS) datasets. The discrepancy between the inferred and modeled eddy viscosity
was represented as a Gaussian random field and propagated to obtain uncertainty bounds on the mean
flow velocities. The research group of Iaccarino [10, 11, 12] introduced adhoc, but realizable perturba-
tions to the non-dimensional Reynolds stress anisotropy tensor ai j to quantify structural errors in eddy
viscosity models. Tracey et al. [13] applied neural networks to large eddy simulation data to learn the
functional form of the discrepancy in the eigenvalues of ai j and injected these functional forms in a
predictive simulation in an attempt to obtain improved predictions. Xiao and co-workers [14] inferred
the spatial distribution of the perturbations in ai j and turbulent kinetic energy by assimilating DNS
data. Weatheritt [15] uses evolutionary algorithms on DNS data to construct non-linear stress-strain
relationships for RANS models.

Ling and Templeton [16] used machine learning-based classifiers to ascertain regions of the flow
in which commonly-used assumptions break down. King et al. [17] formulated a damped least squares
problem at the test-filter scale to obtain coefficients of a subgrid-scale model. In both of these works,
results were demonstrated in an apriori setting.

In the LEARN program [18, 19, 20, 21], we took the first steps towards improving predictive model
forms by defining a data-driven modeling paradigm based on field inversion and machine learning
(FIML). The FIML approach consists of three key steps : a) Inferring the spatial (non-parametric)
distribution of the model discrepancy in a number of problems using Bayesian inversion, b) Transform-
ing the spatial distribution into a functional form (of model variables) using machine learning, and c)
Embedding the functional form in a predictive setting. Predictions were demonstrated in turbulent and
transitional flows with imposed pressure gradients. A key advance in this technique was the idea of
connecting inversion and machine learning towards the end of functional corrections. Note that steps a)
and b) involve off-line (training) computations, whereas step c) is on-line (prediction).

Ling et al. [22] and Xiao and co-workers [23] bypass the inference step and use machine learning
directly on DNS data to obtain a more comprehensive model (compared to Tracey et al. [13]) for the
anisotropy tensor ai j. Ling et al. [22] use neural networks to reconstruct ai j and propagate the model to
velocity field predictions. Xiao et al. [23] use random forests to inject the machine learned discrepancy
as a one time post-processing step to a computed baseline solution.

The FIML paradigm was further extended in Ref. [24] to the prediction of turbulent separated flows
around airfoils and much improved predictions were demonstrated in geometries and flow conditions
that were not part of the training data. The resulting machine learned model was embedded in a commer-
cial finite element solver (Accusolve) and accuracy improvements were confirmed, thus demonstrating
portability.

In this Phase II report, we pursue the following:

1. To describe the paradigm of combining inference and machine learning using a simple turbulence
modeling example,
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2. To explain the role of inverse modeling as a critical step in data-driven turbulence modeling,

3. To explain how inverse modeling can be used to extract turbulence modeling information in data-
sparse and data-rich situations and how machine learning can convert this information into mod-
eling knowledge,

4. To demonstrate how FIML can be used to augment existing turbulence models in a predictive
setting

3 Data-driven Turbulence modeling: Key issues

Several observations are pertinent to successfully pursuing data-driven techniques for the development
of turbulence models:

1. Predictive models of turbulence are formulated as a set of equations with parameters and func-
tional forms that cannot be determined from theory alone. Additionally, it is not obvious as to how – or
what aspects of – a model can benefit from data.

2. Even if individual terms in the closure equations are modeled accurately, small discrepancies can
lead to poor results. For instance, Poroseva and Murman [25] observed that even if some terms in a
second moment closure are extracted directly from DNS, the overall prediction was not satisfactory. It
is thus the balance between every term in the model equation that is important.

3. The information required by the models is not immediate in the DNS/LES/experimental data.
This information must be created from data. The required information is typically embedded in a number
of quantities such as time scales, length scales, etc. Since turbulence models are typically formulated
to provide first and second moments, these scale variables assume different values in closure models
compared to their values in the real-world or in higher-fidelity simulations.

4. The information being extracted can be defined only in terms of the turbulence closure. This
restricts the use of approaches such as direct data mining and pattern recognition applied in isolation to
DNS data sets. As an example, the use of a constitutive relationship (or wall damping functions) directly
from DNS data may become inconsistent in a predictive modeling setting because intermediate variables
such as the dissipation rate will be highly erroneous in a RANS model (the point of application) whereas
it would be accurate in the DNS data (the point of learning).

4. Information extracted from specific flow configurations has to be converted to more general
modeling knowledge. Machine learning can enable this transformation, but this issue will be further
complicated by the fact that turbulence is a strongly non-local phenomena and that the resulting models
must be realizable, satisfy invariance properties, etc.

5. The machine-learned corrections should be inactive when the predictive accuracy of the baseline
model is acceptable.

6. A range of uncertainties should be accounted for and propagated to the outputs. This includes
uncertainties/errors in the data, numerical errors, uncertainty in the problem setup (especially if the data
comes from an experiment), variability in the setup of the inverse problems, probabilistic nature of the
machine learning algorithm, etc.

7. When embedded in a predictive setting, the inversion/machine learning-augmented turbulence
model should be efficient and have good convergence properties.
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4 Field Inversion and Machine Learning (FIML) for Turbulence Model-
ing

A schematic of the FIML methodology is shown in Figure 1. The following section will offer specific
examples of the various quantities used in this work.

Given an existing model, a model correction field 1 β(x) is introduced into the transport equation.
Starting with some high fidelity or experimental data Gd , an inverse problem will be formulated to
minimize (an appropriately regularized form of) ||Gd −Gβ||, where Gβ is the predicted output for a
given correction field. Note that the intent is not to infer a limited set of parameters that characterizes
the correction, but rather to extract the correction field itself. In other words, β is sought at every
discrete location in the computational domain and inserted into the transport equation. Thus we are
directly addressing structural errors and uncertainties in the model.

The correction fields will be obtained for an ensemble of problems (on different data sets G1
d ,G

2
d .. as

shown in the figure) representative of the physical phenomena that is to be modeled. Unlike in parameter
estimation, in which the inferred parameters can be used directly in simulations, the β(x) field by itself
is of limited use in quantitative modeling. In other words, having inferred the optimal model correction
function β, it remains to convert the inference into modeling knowledge.

To be useful in predictive modeling, the spatial dependence of β(x) has to be transformed into feature
space using machine learning 2. Machine learning effectively constructs a functional form β(ηηη), where
ηηη(((U(((xxx)))))) are features (derived from flow and turbulence variables U) that will be available during the
solution. The elements of the feature vector ηηη have to be preferably locally non-dimensional quantities3

such that the functional corrections can be translated across different problems.
It has to be recognized that the inversion and machine learning are pre-processing steps as shown in

the red box. During the predictive simulation, (at each time-step or solver iteration), the solver will pass
feature vectors η̂ηη to the ML evaluation routine and receive appropriate model correction quantities β̂ for
injection into the data-augmented turbulence model.

5 Channel Flow: A tutorial on FIML

For purposes of demonstration, we will focus attention on planar turbulent channel flow in this section.
This canonical problem has been heavily utilized to calibrate model parameters throughout the history of
turbulence modeling, although most models do not account for the variability due to Reynolds number.
The question of choosing the right combination of length and time scales is still an outstanding one in
modeling. Rich Direct Numerical Simulation (DNS) datasets[26, 27, 28] exist for such flows. Again,
for illustrative purposes, we consider the Wilcox k−ω model [29].

The Reynolds-averaged momentum equation for a fully developed, incompressible and steady chan-
nel flow is given by

∂

∂y

[
µ

∂u
∂y
−ρu′v′

]
− ∂p

∂x
= 0, (1)

1β is a spatial field if the problem is steady and a spatio-temporal field if it is unsteady
2The machine learning step may be avoided by clever trial and error model development
3|S|τ is an example of an acceptable feature, where |S| is the magnitude of the strain-rate tensor and τ is a turbulent

time-scale.
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Figure 1: Schematic of field inversion and machine learning framework for data-augmented turbulence
modeling
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where, u represents the mean streamwise velocity and the Reynolds stress −u′v′ is modeled as νt
∂u
∂y in

eddy viscosity models. In the Wilcox k−ω model, νt =
k
ω

, where k and ω satisfy the following transport
equations:

νt

(
∂U
∂y

)2

−α
?kω+

∂

∂y

[(
ν+σ

? k
ω

)
∂k
∂y

]
= 0, (2)

γ

(
∂U
∂y

)2

−αω
2 +

∂

∂y

[(
ν+σ

k
ω

)
∂ω

∂y

]
= 0, (3)

νt = k/ω ; Rii =
2
3

k ; R12 = R21 =−νt
∂u
∂y

.

The model assumes standard constants [29]. The system is solved on a geometrically graded mesh
consisting of 201 points with the first grid point placed well into the viscous sublayer at y+ ≈ 0.05.

5.1 Introducing embedded discrepancy

We pursue two different approaches to introducing embedded discrepancy functions. The first of these
focuses on the scale-providing equation. The second approach investigates the perturbations to the
predicted anisotropy tensor.

5.1.1 Time-scale discrepancy

In this setting, a function β(y) is introduced [30, 31] as a multiplier to the production term in the ω

equation.

β(y)γ
(

∂U
∂y

)2

−αω
2 +

∂

∂y

[(
ν+σ

k
ω

)
∂ω

∂y

]
= 0. (4)

5.1.2 Discrepancy in anisotropy

In this setting, the eigenvalues of the anisotropy tensor are perturbed [32, 23]. The anisotropy tensor is
given as:

a =
R
2k
− 1

3
I = VΛΛΛVT

If {ΛΛΛ,,,VVV} represent the eigen system of a, then by perturbing the eigenvalues, the Reynolds stress
tensor can be modified as below:

Rpert = 2k
[

1
3

I+V(ΛΛΛ+βββ(y))VT
]

In this case, βββ(y) = {δx(y),δy(y)} will be inferred from data.
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5.2 Field inversion - Formulation

The next step is to extract the spatial distribution of the embedded discrepancies from data. In addition
to determining an optimal discrepancy function, we are also interested in characterizing the impact of
uncertainties in the data, model inadequacies and existing knowledge, on the inferred outputs. The
Bayesian approach [33] provides a formalism to quantify the posterior probability distribution q(β|d),
given a prior distribution (p(β)), data vector, d, and a likelihood function, h(d|β). The Bayes theorem
states that,

q(β|d) = h(d|β)p(β)
c

, (5)

where c=
∫

h(d|β)p(β)dβ. In the current form, the solution to equation 5 is intractable using a sampling
based method because of the infinite dimensional nature of β. The problem is made finite-dimensional
by re-defining it such that value of β is inferred at every point in the computational domain of the RANS
grid 4.

In this work, the prior probability distribution p(β) is assumed to be Gaussian. Further, since the
spatially varying form of β is desired, the number of parameters to be estimated is equal to the number
of grid points in the computational domain 5. To promote tractability of the computation of the posterior

properties, p(β|d)≡ e−(β−βprior)
TC−1

prior(β−βprior) and h(d|β)≡ e−FTC−1
obsF are approximated to be Gaussian.

In these expressions, F is a vector with ith element and fi = di,RANS−di,benchmark. di is the ith data point.
Cobs and Cprior are the observational and the prior covariance matrices. βprior is the prior mean of
the parameters (and also corresponds to the base model). Under Gaussian assumptions, the maximum
a posteriori (MAP) estimate [33] is taken to be the representative of the mean of distribution. The
MAP can be computed by maximizing the numerator in Eq. 5, or equivalently by solving the following
deterministic minimization problem:

βMAP = argmin
β

J(β) = argmin
β

1
2

[
FTC−1

obsF +(β−βprior)
TC−1

prior(β−βprior)
]
, (6)

The resulting optimization problem is still high-dimensional but efficiently solved using adjoint-
driven techniques, but the posterior distribution is not determined by sampling methods and instead,
the covariance is approximated by linearizing about the MAP point. This leads to a definition of the
covariance in terms of the inverse of the Hessian of the objective function, J(β),

Cposterior =

[
d2J(β)

dβdβ

]−1
∣∣∣∣∣
βMAP

. (7)

The error introduced by the Gaussian assumption is difficult to estimate without the use of sampling
strategies, which are considered in Ref. [31].

The posterior distribution β can be obtained by first performing a Cholesky decomposition of the
form6

RT R =Cposterior, (8)

4Note that is still a very high-dimensional problem.
5This dimensionality could be reduced to a degree by expressing β as a weighted sum of appropriately defined basis

functions
6R is an upper triangular matrix
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and generating realizations using

β = βMAP +RT s, (9)

where, s is a vector of the same size as β and contains normally distributed random numbers with zero
mean and unit standard deviation. The realizations of the posterior β are used to construct the posterior
realizations of various flow quantities by solving the RANS equations for each realization of β. The
prior realizations are constructed in a similar manner using Cprior.

To summarize, the above inversion procedure involves:

1. Solution of a deterministic optimization problem with the objective function J(β), typically using
a gradient based method, to obtain the MAP model.

2. Building an approximation of the posterior covariance by the inverse of the Hessian around the
MAP point.

5.3 Field inversion - Results

5.3.1 Time-scale discrepancy

Figure 2 shows the prior, posterior and DNS values at Reτ = 550 for the inference involving time-scale
discrepancy. The posterior velocity profile is almost identical to the DNS profile with the standard
deviation collapsing to a very low value. The accuracy of the posterior can be further verified from
the plot of y+du+/dy+. As turbulent production is negligible for y+ < 1, the posterior solution is not
affected by β(y) and hence β(y) remains same as the prior. Correspondingly, there is also no reduction
in uncertainty in the viscous sublayer for y+ < 2. Outside of the sublayer, β(y) changes to match
the specified benchmark velocity profile and a drastic reduction in the posterior standard deviation is
noticeable. Figure 3 shows the inferred function, β, for all Reynolds numbers. In every case, β in the
overlap and the log-layer scales with wall units. In the outer region, β scales with wall height. This is a
physically reasonable variation and represents the systematic nature of modeling deficiency. The large
variation in β around y+ = 25 shows the inability of the underlying model to provide the correct time
scale near the interface of the overlap region and the log–layer. It is particularly revealing that the nature
of the required correction is almost universal (with second-order viscous corrections) for y+ < 50, a fact
that can be used to develop improved models.

5.3.2 Discrepancy in anisotropy

Figure 4a shows the prior and posterior velocity for the perturbation in Barycentric coordinates. The
corresponding perturbations are shown in Figure 4b. As expected, the baseline model aligns itself with
the plane strain line. The inferred perturbations, which guarantee that the velocity and Reynolds shear
stress match the DNS, suggest a different anisotropy compared to the DNS. Figure 5 shows that these
perturbations may exhibit universal behavior.

5.4 Machine Learning-augmented prediction and uncertainty quantification

Having inferred the discrepancy for specific problems, the role of machine learning is to map the in-
ferred discrepancy from physical space to feature space. For purposes of brevity, only the anisotropy
perturbations are shown here. Gaussian process regression [34] was used for this purpose. The fields
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(a) Non dimensionalized velocity, U+. Mean is shown
with the solid line; shaded region represents the 95%
confidence interval.

(b) Correction function, β. Mean is shown with the solid
line; shaded region represents the 95% confidence inter-
val.

(c) Non dimensionalized Reynolds stress. (d) y+ dU+

dy+

Figure 2: Time-scale discrepancy for Reτ = 550. The prior solution is represented in green, red repre-
sents the posterior and blue represents the DNS solution.
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Figure 3: Time-scale discrepancy: The inferred correction function, for different Reynolds numbers.
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Figure 4: Anisotropy discrepancy for Reτ = 550. The prior solution is represented in green, red repre-
sents the posterior and blue represents the DNS solution.
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Figure 5: Comparison of the barycentric perturbations for different Reynolds numbers.
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(a) Barycentric perturbations
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Figure 6: Comparison of the machine learning prediction. Shaded region represents the 95% interval
and few representative samples are represented with solid lines.

were separated into two clusters y+ < 100 and y+ > 100 and the following features were used in the
machine learning:

δx =

{
FGP(y+,Sk/ε,y

√
k/ν,u2

yk/ω) y+ ≤ 100
FGP(y,Sk/ε,y

√
k/ν,u2

yk/ω) y+ > 100
(10)

δy = −1.7321δx (11)

Once the GP has been constructed, it was embedded into a predictive model. To propagate the
uncertainties in the embedded discrepancy functions, realizations were generated as follows:

δx = N (δx,GP,σ
2
δx,GP

) (12)

δy = −1.7320δx. (13)

To assess the impact of variabilities in machine learning, an ensemble of realizations (from the
posterior of the GP) was used to obtain predictions and predictive bounds as shown in Figure 6.

6 Inference in complex problems

In this section, the inversion procedure will be assessed in a wide range of problems involving flow
separation, with the availability of different types of data. For purposes of demonstration, the model
correction β(x) is introduced as a multiplier of the production term P(ν̃,U) in the Spalart-Allmaras
model. This equation set is notionally represented by

Dν̃

Dt
= β(x)P(ν̃,U)−D(ν̃,U)+T (ν̃,U). (14)

As mentioned in Ref. [21], it must be recognized that the introduction of β(x) changes the entire
balance of the model, (and need not be interpreted as merely a modification of the production term).
It is equivalent to adding a source term δ(x) = (β(x)− 1)P(x). Inferring β, however, leads to a better
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Figure 7: The prior, posterior, SARC and LES coefficient of friction (C f ) at the lower wall for the convex
channel. Shaded region represents the 95% confidence interval.

conditioned inverse problem, as β is non-dimensional and has a simple initial value of unity. In these
problems, a compressible RANS solver [35] is used along with a discrete adjoint solver. Additional
information on the inversion procedure can be found in Ref. [21].

6.1 Boundary layer flow over a curved surface

The benchmark data for boundary layer flow over a convex curve is obtained from a Large Eddy Sim-
ulation [36, 37] with an inlet boundary layer with Reθ = 2000. A comparison of the inferred solution
(using the skin friction coefficient C f from the LES) with the analytically-sensitized rotational correction
(SARC) model of Spalart [38] is presented.

Figure 7 shows the prior and the posterior C f with 95% confidence intervals alongside the LES
and SARC results for the convex channel. Figure 8 shows the inferred MAP correction term, δMAP,
and the analytically-defined correction term from the corresponding SARC model. Qualitatively, the
correction term is similar for both models, but the magnitudes are locally different. The trend in the
correction is consistent with the expectation that the convex curvature reduces the turbulence intensity.
The quantitative nature of the results should provide valuable information to the modeler. Figure 9
shows the variation of the streamwise velocity with respect to the distance from the wall at various
streamwise locations. The posterior velocity is seen to correlate well with the LES solution compared
to the prior and the SARC prediction. The results suggest that the SARC model requires improvements
in the log layer.

6.2 Boundary layer separation over a wall-mounted hump

To assess the generality of the inverse modeling and its impact on other field quantities, the inversion
was applied to a NASA benchmark test [39] (Fig. 10), which involves separated flow over a smooth
hump. In this problem, β(x,y) was inferred with the objective of matching the wall pressure distribution
in the region 0.5 ≤ x/c ≤ 1.5. Even though the objective function was only taken to be the measured
surface pressure, improvement is seen in the Reynolds stress predictions (Fig. 10c). As a consequence
of the overall improvement in the field solution, the predicted length of the separation bubble was found
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Figure 8: Contour plot showing the inferred correction term (δMAP) and the SARC correction term for
the convex channel.

Figure 9: The prior, posterior, SARC and LES stream–wise velocity at various locations for the convex
channel. s⊥ refers to the perpendicular distance from the lower wall. Refer Fig. 7 for the legend
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be 15% more accurate compared to the baseline solution. Results can be improved by considering more
information from the experiment [21], but this exercise offers evidence that for separated flows, pressure
data can be valuable in inferring model discrepancy.

6.3 Separated flows over airfoils

In this example, high angle of attack turbulent flow over the S809 airfoil [40] is considered. and the
flow domain over airfoils is discretized using a C-grid with 291 points in the wraparound direction and
111 points in the wall-normal direction.

To determine the impact of the type of data on the inference, two different inverse problems were
solved with respect to the following data sets:

a) Measured surface pressure coefficients (Cp)
b) Measured lift coefficient (Cl)
In both of the above inverse problems, the prior solution is assumed to be the baseline SA model

and the ratio of the observational covariance to the prior covariance was set to λ = 4× 10−4. The
two objective functions were confirmed to lead to a similar solution to the inverse problem (Fig. 11).
While there are discrepancies in the post-stall region, the near-wall features in β(x) are almost identical,
resulting in indistinguishable surface pressures. This can have significant implications for modeling
because many airfoil data sets only provide lift and drag measurements. This implies a much
higher level of confidence in the experimentally measured lift compared to the variability of β. Further,
the optimal solution was also confirmed to be relatively insensitive to order of magnitude variations in
λ.

7 Machine learning and predictions in complex problems

The inverse approach presented in the previous section results in an optimal correction field for a given
flow condition and geometry. To be useful in predictive modeling, a functional relationship must be
developed by considering the output of a number of inverse problems representative of the modeling
deficiencies relevant to the predictive problem. Further, as explained below, elements of the feature
vector η are chosen to be locally non-dimensional quantities such that the functional relationship β(η)
is useful for different problems in which the η variables are realizable.

7.1 Feature selection

To build a set of features η upon which the functional relationship β(η) will be based, a logical place
to start would be to identify the independent variables in the baseline SA model. The source terms in
the SA model are a function of four local flow quantities, ν, ν̂, Ω, d, which represent the kinematic
viscosity, the SA working variable, the vorticity magnitude, and the distance from the wall, respectively.
As discussed in Ref. [19], these quantities do not constitute an appropriate choice for the input feature
vector to the machine learning algorithm. They are dimensional quantities which may have different
numeric values even when two flows are dynamically similar. Thus, the inputs are re-scaled [19] by
relevant local quantities that are representative of the state of turbulence. An obvious locally non-
dimensional quantity in the baseline SA model is χ = ν̂/ν. We define local scales, ν+ ν̂ and d, and
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(a) Wall pressure coefficient

(b) Reynolds shear stress contours u′1u′2/U2
∞

Figure 10: Application of inverse modeling to separated flow over a smooth surface.
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Figure 11: Inverse solutions using objective function based on lift (Cl) and surface pressure (Cp) coeffi-
cients. β(x) in the near wall region is unaffected by the choice of objective function resulting in identical
inverse Cp.

introduce an additional variable,

Ω̄ =
d2

ν̂+ν
Ω . (15)

It can be shown [19, 24] that the locally non-dimensionalized source terms in the baseline SA model are
dependent only on Ω̄ and χ.

The set of features that were evaluated includes {Ω̄,χ,S/Ω,τ/τwall,P/D}, where S,τ,τwall represent
the strain-rate magnitude, magnitude of the Reynolds stress, and the wall shear stress, respectively.
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7.2 Learning

The lift-based inferred correction fields were obtained for the S814 airfoil at different combinations of
angles of attack and Re = 1× 106 and 2× 106. The inversion is followed by employing two different
machine learning techniques to reconstruct model corrections:

a) Neural networks (NN): The standard NN algorithm [41] operates by constructing linear combi-
nations of inputs and transforming them through nonlinear activation functions. The process is repeated
once for each hidden layer in the network, until the output layer is reached. Tensorflow [42], which
utilizes standard back-propagation algorithms [41] is used in this work.

b) Adaptive boosting (Adaboost): Adaboost is an ensemble learning model originally developed by
Freund et al. [43]. In this work, we used the enhanced version by Drucker [44] which is implemented in
scikit-learn [45]. The basic idea of adaptive boosting is to iteratively use weak learners which iteratively
focuses on the data that was predicted poorly in the previous iteration.

Sample evaluations are presented in Figure 12 on a selection of data points which were randomly
left out from the training set. For this sample, the error metric (coefficients of determination - R2) was
found to be 0.89 and 0.94, respectively for the neural network and adaboost.

(a) Neural Network (b) Adaptive Boosting

Figure 12: Results of Machine learning evaluations using two machine learning algorithms on S814
inversion data.

7.3 Prediction

As schematized in Fig. 1, the mapping β(η) built during the training process is queried for input features
η̂ at every iteration of the flow solver to obtain outputs β̂ which are embedded into the predictive model.
This process is repeated until convergence. Again, it is emphasized that the training data involved only
the S814 lift data Re = 1×106,2×106.

The model performs equally well for airfoil shapes (S805 and S809) and Reynolds numbers (Re =
3× 106) not used in the training set as seen from Figs. 13, 14. Clearly, significant improvement in

19



stall prediction is evident in the lift prediction. As a consequence, the drag rise is predicted to occur at
lower angles of attack than in the baseline model, a trend that is qualitatively correct. Further, there is
no evidence of deterioration of accuracy in the low angle of attack regions, where the original model is
already accurate. The improvement in the quality of the predictions is further emphasized in Figs. 15, 16.
These results confirm that the data-augmented model offers considerable predictive improvements in
surface pressure distributions.
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Figure 13: NN-augmented SA prediction for S805 airfoil using data-set P. — Experiment, — base SA
and — neural network.

8 Conclusions

The abundance of data from high-fidelity simulations and high resolution experiments provides un-
precedented opportunities to comprehensively inform closure models. A paradigm of data-driven model
development comprising of full-field inversion and machine learning (FIML) was described. The infer-
ence process generates function correction information for specific problems. Once the inference is
applied over a number of problems, machine learning is used to reconstruct the inferred function in
terms of variables that will be available during predictive simulations. The reconstructed function is
then embedded into a predictive solver, which queries the machine learned model at every iteration of
the flow solver to obtain model corrections. The field inversion process directly provides comprehensive
information about model discrepancies, which is of great use to the modeler in the quest to formulate
more accurate closures. The machine learning step could be considered as one tool that can be used to
reconstruct the discrepancy.

A tutorial was presented - in the context of 1D channel flow - on the use of FIML in model devel-
opment with the goal of addressing two different types of model discrepancy - in time scales and stress
anisotropy.
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Figure 14: NN-augmented SA prediction for S809 airfoil using data-set P. — Experiment, — base SA
and — neural network.

α= 16◦

α= 18◦

α= 20◦

Figure 15: Surface pressure coefficient for S809 airfoil at Re = 2×106 and α = {16◦,18◦,20◦}. Refer
Fig. 11(c) for legend.

In more complicated problems involving flow separation, the inference process was shown to as-
similate sparse data while improving the solution over the entire computational domain. This reinforces
confidence that the procedure does not overfit the model to the data and that predictive improvements
can be realized for the right reasons.

In the case of turbulent flow separation over airfoils, the data-assisted model showed significant
improvement over the baseline model in predicting lift and drag coefficients and stall onset angles and
the model predictions were confirmed to be excellent in airfoil shapes and flow conditions that were not
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α= 12◦

α= 14◦

Figure 16: Surface pressure coefficient for S805 airfoil at Re = 1×106 and α = {12◦,14◦}. Refer Fig.
11(c) for legend. Experimental pressure is shown only for the upper surface.

part of the training set.
The philosophy and formalisms employed in this work are of a general nature and are not restricted

to the type of model or the type of model discrepancy that is addressed. In such endeavors, it would be
critical to ensure that the model augmentations a) can be developed based on sparse experimental data
as well as rich DNS/LES data b) do not influence regions of the flow that are adequately represented by
the baseline model (near-wall region in thin boundary layers), and c) do not degrade the convergence
properties of the solver. There is much to be gained by carefully exploring a broader set of input
features [16, 23] and alternative machine learning methods and approaches [15, 34]. Finally, realizability
limits [10, 23] and invariance properties [46] should be respected to constrain the model, especially when
the model is operating in an extrapolatory mode.

For the framework to be able to offer improved predictions in practical situations, inverse problems
must be solved over a wide class of problems (and over multiple objective functions of interest) that
will be representative of the deficient physics in the baseline model. Concurrently, the tendency of the
learning process to over-fit data must also be avoided. At every stage of process, the underlying physical
insight is irreplaceable and thus it is left to the modeler to make judicious choices about the data, prior
information and introduction of one or more correction functions.

9 Symposium on Advances in Turbulence Modeling

The idea of data-driven turbulence modeling which was explored with NASA LEARN funding from
2014-2017 has been received well by the community and several groups around the world are pursu-
ing the idea. With the goal of disseminating results to the broader community and to place the role of
data-driven modeling within the context of mainstream turbulence modeling, a three-day Turbulence
Modeling Symposium sponsored by the University of Michigan and NASA LEARN was held in Ann
Arbor, Michigan in July 2017. This meeting brought together nearly 90 experts from academia, govern-
ment and industry, with good international participation. Emphasis was placed on turbulence modeling
in a predictive context in complex problems, rather than on turbulence theory or descriptive modeling.
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A report [47] was published and slides from all talks are available from the symposium website 7.
The three-day symposium included 32 participant talks, divided into the following broad areas: new

ideas for turbulence modeling, Reynolds stress transport modeling, uncertainty quantification, experi-
ments, data-driven methods, flow solution technologies of the future, LES, direct numerical simulations
(DNS), and applications. There were also 6 keynote/plenary invited talks. The symposium was designed
to encourage discussion and to be speculative. There was well over 8 hours of discussion time in the
symposium that often led to very open/candid exchanges of views. Total attendance was 88, with 53
from academia, 20 from national labs and 15 from industry. There was representation from outside of
the United States, including 8 participants from Europe, and representation from experimentalists (6
talks). There was also a blend of providers and users of turbulence modeling. Overall, four goals were
accomplished:

• In general, a big positive from the symposium was to get a number of turbulence modeling ex-
perts and users in one room together for three days of focused interactions, which reflected much
goodwill. Although there was an attempt to define some common goals/focus, this proved to be a
challenging task, in part because stake-holders had very diverse needs from CFD.

• One key idea of the symposium was to try to get all of the participants to include in their thinking
about RANS and to critique the concept of an ultimate barrier (at the workshop, the expression
“glass ceiling” was used). Here, ultimate barrier refers to an unseen and not exactly defined, yet
unbreachable barrier. If such a barrier indeed exists, then progress beyond it will be impossible
(or at least highly unlikely), despite the ability to “see” the desired goal and even to define it.

• An important goal of the symposium was to discuss some of the more recent topics to emerge
in the field of turbulence modeling, primarily uncertainty quantification (UQ) and data-driven
modeling. The purpose was two-fold: (1) to educate the participants about the basics behind
these topics, and (2) to try to place these topics in the context of mainstream turbulence modeling,
as it has been practiced since the middle of the last century.

• A set of recommendations were formulated and shared with the community.
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