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Turbulent flows & their computation

“Perhaps the single, most critical area in CFD simulation capability
that will remain a pacing item by 2030 in the analysis and design of
aerospace systems is the ability to adequately predict viscous
turbulent flows with possible boundary layer transition and flow
separation present”

Vision 2030 CFD Report (NASA CR 2014-218178)

Turbulent simulations & Modeling hierarchies

Direct Numerical Simulations (DNS): No modeling required
Large Eddy Simulations (LES) : Modeling of small scales
Reynolds Averaged Navier—Stokes (RANS) : Modeling all scales



Resolution requirements for aircraft wing (Re_ = 2x107)

DNS

t Out of reach > 10*? mesh points

Feasible in 2025 ~ 101! mesh points

l Feasible in 2000 ~ 108 mesh points

High Lift Wokshop



Resolution requirements for aircraft wing (Re_ = 2x107)

DNS

t Out of reach > 10*? mesh points

Feasible in 2025 ~ 101! mesh points

l Feasible in 2000 ~ 108 mesh points

Near-wall modeling is here to stay for the next 20 years for analysis and

much longer for design



Thoughts on RANS Modeling

Limited to between one and seven variables, and up to 30
adjustable constants.

Their creation is unpredictable and appears to rest on large amounts
of intuition and luck, in spite of using a “rigorous” approach

* It has become clear in the CFD community that we have reached a
”idea saturation” stage

 Recent work has seen a shift toward somewhat greater complication
in RANS systems, with mixed degree of success

=2 Need to determine a large number of free parameters from a small

set of test cases

=>» Developed using canonical theories in idealized cases

=» Damage to convergence, uncertainty over boundary conditions, etc



On the other hand..

 DNS and LES have been produced in quantity over the last decade.

* Experimental PIV and MRV data sets

Py 0.000 0325 0.680 0975 1.30
Data set§ he.nve not had a T :
substantial impact on closure i o5 /
modeling

=> DNS is more comprehensive/*
accurate than earlier lab
experiments but the impact on
modeling has been additive, not
transformative.




Why is it hard ?

Data
? Data doesn’t exist in
a form that is

directly useful

|

Predictive
capability




Our approach

Recognize that traditional approach to model development does not
leverage availability of massive amounts of data.

=» Informing closure terms with a broader set of simulations can
yield more universally-accurate simulations of turbulence

We propose large-scale data-driven techniques (based on inverse
modeling and machine learning) to enable the construction of accurate
models of turbulence

=>» Not replacing existing modeling knowledge, but just building on it

This technique enables
=>» The ability to “infer” what’s missing in the closure
=>» The ability to convert that inference into modeling knowledge



Our approach

Data

Inference in context ﬁ Inverse modeling

Information

Reconstruction ﬁ Machine Learning

Modeling
Knowledge

Blending L Implementation

Predictive
capability




Questions to be answered

* Isthere merit in the general idea?

* How to setup a properly-posed data-driven-turbulence-modeling
problem ?

 What are the most effective ways to use Machine Learning
approaches?

 What data (and how much data) is needed to improve the
predictive capabilities?

 What are the new modeling techniques and algorithms that must
be developed to make these approaches a reality?

* What improvements can be shown in a number of flows of
interest?

e Once a model has been learned, how is it best embedded in an
existing RANS solver?

Providing some fundamental answers to these questions is precisely what
our Phase | NASA LEARN Project is about.



Key Innovations in the field of turbulence modeling

Quantitative information on model deficiencies

Functional forms of what the model is missing and not just
parameters

A formalism to use data directly in model development

A framework to embed machine learned models in a
predictive environment



Related Work

UQ Perspective:

Kennedy & O’Hagan (2000)

Dow & Wang (2010)

Tracey, Duraisamy, Alonso (2012)
Emory, laccarino & Larsson (2013)

Prediction Perspective:

Richard Dwight (2014)

All of these works are, however, focused on inferring model coefficients
in one form or the other



Outline

* Motivation

* |s it even possible?

* Passive Learning from DNS and LES

* Active Learning from Improved RANS
* Demonstration

* Technology / Tools & Implementation
 Summary, Implications, Vision



Can we recreate the Spalart-Allmaras model from data?

pe = pUfop1
o o . Ch1 \? 1( 9 N ov D
E—Hfag‘ oz, cyp1 (1= fr2)SU— (Cwlfw_?fw) (E) —i—; <8—:c] <(V—H/)87j>+cb2 Oz 8%)
Convection Destruction Diffusion Cross
Production
Source = — Destruction + Cross Production

* Convection and diffusion from transport equations
* Source term is an input-output mapping:

Inputs: Output:

VﬁﬂdN:ﬁﬁaﬁ - Source
9 Y] Y] 9 aajz axz
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Procedure

1) Select representative
datasets

— Flat plates, pressure-driven
channels, airfoils

2) Choose and extract input
and output features
— Spalart-Allmaras quantities
3) Select learning algorithm
— Neural Network

4) Train learning algorithm
—  BFGS optimizer

5) Embed learned model
within flow solver
—  SU2

eeeeeeeeeeeeeee
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Challenges

A number of things can go wrong

* Errorsin learning the training data

* Poor prediction on new locations

* |nstabilities in PDE solver introduced by ML



Results

* We used this machinery to run >450 cases.

* Flat plate boundary layers, pressure-driven
channels, Airfoils, ONERA Wing, etc

Features: Learn full source term: s = f(Q, x, N)

o o - Ch \* 1[ d oD oy v
E—Fuja—xj = Cbl(l—ftg)SV— (Cwlfw—?ft2> (a) —|-; (8—33] <(V+V)8—ij>+6b2 6%1 axz>
Convection Destruction Diffusion Cross

Production



Results

* We used this machinery to run >450 cases.

Flat plate boundary layers, pressure-driven
channels, Airfoils, ONERA Wing, etc

Features: Learn full source term: 5= f(Q,x, N)

1/
‘78113] - - (833] v+ 83;7) ->

Convection Destruction Diffusion Cross
Production




Input features

Dimensional Features

v 50 d N= 209

Locally Non-dim

X =0/v
_ d2
() = — (2
UV + U
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Misleading results

Favorable pressure gradient channel flow

Prediction vs. Truth for MulProduction
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Loss function during training

* Loss function describes the quality of a
prediction during the training

e Squared-error
Does not appropriately

k
L — Z(pz _ tz)Q Reflect the cost of
1=1

misprediction.

* Dimensional squared-error
9 penalizes differences in

k .
d? the quantity that
L p— — L _ . _t ) .
2 E (( (Vq; T Vz')2 )ps,z s,z) is relevant to the PDE

i=1 solver
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Results

Source

Squared-distance Loss
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Summary of feasibility study

 Demonstrated procedure for creating a machine-
learned turbulence model

e Successfully replicated Spalart-Allmaras
turbulence model

 Good agreement seen on flows not in the
training set

* Loss function selection is critical for prediction
quality

 Must test model in PDE solver to evaluate
performance

More results in:
A Machine Learning Strategy to Assist Turbulence Model Development (AIAA 2015-1287)
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Motivation

s it even possible? (Definitely not impossible)
Passive Learning from DNS and LES

Active Learning from Improved RANS
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Passive Learning

Can we directly learn the functional form of modeling terms from DNS/
LES Data?

Example: ML-informed k-€¢ Model

0ij = bij = fuSijk/e



Passive Learning

Can we directly learn the functional form of modeling terms from DNS/
LES Data?

Rotation Measure R Example: ML-informed k-& Model
Anisotropy measure - "‘“"-L ") - bi; = fuSijk/e
Distortion measure S fl

Non-locality —— ¢ ‘-:_;’:



Example: ML-informed k-¢ Model

bij,data — fuSijk /€|

* £ will be highly erroneous in a RANS calculation (and to an extent, k as
well)

e € cannot be "measured” accurately even in an LES calculation

* Need RANS inputs

Need dependent variables that are more intimately related to
data within modeling context



Outline

Motivation
Passive Learning from DNS and LES (Not very effective)

Active Learning from Improved RANS
Demonstration

Technology / Tools & Implementation
Summary, Implications, Vision



A model that interacts with data

R(Q)=V.T RANS Equations
T = E(Q, kﬁawa 7, ) Turbulence model
R(Q) = V.7 Introduce field variable

= E(Q L W y @) a(x) (Not a parameter)

G(Q) Choose Qty of Interest

_ _ Solve inverse problem
mz’nJ o HG(O&) Gexp‘ ‘2 for field variable



Original Model Application to SA Model
Dv

—=P-D+T

Dt

Introduce correction

Dy
— P _aDLT
D ol) +

Objective function

L data model]2
(G = /[Tw — Ty ] ds
S



Original Model Application to SA Model
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Application to SA Model
Dﬂ goomw
— =P —-aD+T -

Dt B s
‘I_
g NN
- 050.7091.11.315
L data model12 i
G — [Tw — Tw ] dS 05

S
Now we know what was missing in the - —

model. Again, a(x) is not just a i . , , ,

parameter 0 05 o ! 15
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Machine Learning

* o(x) field by itself is of limited use in quantitative modeling
* Machine learning techniques used to extract the functional
relationship a(x) = a(n)
=» Gaussian Process Regression
=» Neural Networks
e 10-fold cross-validation used to narrow down hyper-parameters
 More details on ML algorithms in the paper



Active Learning

Passive approach: Learn from DNS/LES

Active approach: Improve RANS; then learn from RANS

Consistent, Realizable |
No need for full field of datal!

Can work with experimental data!



Dataset 1 Dataset 2 Dataset n Schematic of
1 2 n
G, Gy Gy Framework




Dataset 1 Dataset 2 Dataset n

G,"

Schematic of
Framework

Pre-processing Prediction (for one realization)
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Application to Bypass transition
 Models of bypass transition in general CFD codes are a relatively
recent development (Menter 2006)
* Bypass process occurs as turbulence diffuses into the laminar
boundary layer, and generates disturbances known as Klebanoff
modes

Intermittency transport-based model [Ge et al. (2014) ]

%]z = 2up|S)?y — CLkw + 0, Kl/ + —k>8 k}
%‘; = 20,,1|S|% — Cuow? + 8; [(H i)ajw}

D~ vV UT
DY _ o, [(% 4+ 2)oy1] + P, — B
Dt T\ oy O~ i)+ K



Application to Bypass transition
 Models of bypass transition in general CFD codes are a relatively
recent development (Menter 2006)
* Bypass process occurs as turbulence diffuses into the laminar
boundary layer, and generates disturbances known as Klebanoff
modes

Intermittency transport-based model [Ge et al. (2014) ]

%]z = 2up|S)?y — CLkw + 0, Kl/ + Z—Z)@-k}
%"; = 20,,1|S|% — Cuow? + 8; [(u n Z—Z)ajw}




How about inferring the intermittency field from data?

G) = [ [riete(s) - rpotl(s)]" s

1 Fully Turbulent
_ Inverse
0.02- O Experiment

T3A Data (ERCOFTAC)

05 | 15



Full set of test cases
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Inferred intermittency vs Ge et al. model

0.01

(a) T3B: Optimal ~ (b) T3B: Model ~

Very useful info for the modeler



OK, but how to build a model ?

Assume that
budget holds

Extract
source term

Reconstruct

ny_
Dt

ol O~

aj[(y | VT)(‘)W} +S,

o[+ 2o
Machine 7

Learning




Machine Learning in action : T3C1

(a) Inferred Source term (b) Predicted Source term

(9?1@
= 1k
TI { 7w7/>/7axj7y}




Data Infusion : T3C1

Inverse
................ Prediction
S — Ge et al.

0.03 -
0.02 -

0.01 |-

O_III|III|IIIIIIIIIII
0 0.2 0.4 0.6 0.8

¥

0.014

Prediction
Inverse
Experiment




Outline

Motivation (We need it!)

s it even possible ? (At least not impossible)

Passive Learning from DNS and LES (Not very effective)
Active Learning from Improved RANS (Very promising)
Demonstration (It works reasonably well)

Technology / Tools & Implementation (Requires a lot of
work)

Summary, Implications, Vision



Challenges

D Assembly =>» Collection of relevant /
necessary data
Data

ﬁ Inverse modeling =2 Extreme-scale optimization

Information

u Machine Learning = Noisy, Complex,
Extreme-scale data

Modeling
Knowledge

u Implementation = Computational Efficiency

Predictive
capability




Inverse modeling
J = [|G(@) = Gaatal| + €|[Va|
min o

Very high dimensional minimization problem
L-BFGS Quasi-Newton optimizer

Gradients from discrete adjoint



Machine Learning Requirements

Highly multidimensional
Since learning is in feature space, very highly multi-scale (coarse & rich)
Multiscale learning is an active research area

The training stage requires solution of a large ill-posed linear system of
algebraic equations

Regularization and speedups of solution can be achieved via employment of
methods for efficient complexity reduction, including

— Construction of compact bases via data structures
— Nystrom methods (low-rank approximations)
— Preconditioned iterative procedures
— Specially designed Krylov subspace methods
The test stage requires fast procedures for large matrix-vector products

Computation of predictive variance can be also done efficiently using low-
rank decompositions
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Scalability of Parallelized NN Implementation

* Boosting implementation proved to be linearly scalable up to at
least 500 million rows of data

* Tests done on duplicated LES dataset

— Model fits stayed relatively the same (no improvement due to
no new data)

Lin-Tog plot

Scalability of "Boosting" with R's nnet on exp4 Scalability of "Boosting" with R's nnet on exp4
30 0
250 250
’gx 200
g :
=) -
c £
é € 150
e 0
b £
g F 100
F 100
50
50
0
10 100 1000
0 » _—
0 100 200 300 0 500 600 log(# Training Samples (in millions))

# Training Samples (in millions)



Multiscale GP : Model

|nput noise weights  basis functions

output /J D\
y = F(x)+e F(x) = d(x)Tw = Zw,qs (x), €~ Mo0,0? )
feature space design matrix noise variance
Y \/
0x): RI-RP, @={D;), ®;=0¢ix;), i=1,...,D, j=1,...,n,
/! D\
extended feature space training point

pi(x) = eXp(— x _hf"l' ) i=1,..,D.

i

scale of each basis function



Multiscale GP : Solution

: . : covariance matrix
maximum a posteriori (MAP) estimate of w /

N

W =

identity matrix

. 1= Lool+1;,
O O

log marginal likelihood

N T
LML = - —o%w)Ty - Liog

Liog| L <1><1>T+1‘ 1 100(2162).

predictive mean
me = 0w, oz =0"+¢%d,, ¢, =d(x.).
T ™ test point

predictive variance



Construction of reduced bases

* Given training set, X, usually there exists its subset, B, such
that for a required accuracy and noise level, basis function
centered at some x can be expanded over the centers from B

* The centers of B should be distributed in a way that for a
given scale, h, the distance between them is not less than
some a, a/h <1

 The distance from any point x to the closest center is not
more than a

e Parameter a should be chosen based on the tolerance and is a
subject for optimization



d-Dimensional k-Center Type Space Partitioning
(Clustering)

n = 500 uniform random distribution in [0,1] x [0,1]

1
09+
08
07t

0 e =

1 1 1 1 1 F =
0 01 02 03 04 05 06 07 08 09 1

a=0.4(k=6)



Multiscale Space Partitioning and Basis Construction

* Assign scales. For a space scaled to a unit box, by default one
canset h, =1, h, =0.5h,,..., h, =0.5h,.

 Get characteristic inter-cluster distances, aj=ochj, i=1,...k.
* Apply partitioning algorithm for each scale.

* Get basis functions ¢,(x) (of scale h;, centered at the j-th
cluster centers, j=1,...,k)



Summary

Data
Inference in context u Inverse modeling
Information
Reconstruction ﬁ Machine Learning
I\/Iodeling Functional form is
targeted and not just
Knowledge closure parameters
Blending k Implementation
Predictive

capability




Implications & Impact

Modeling insight : Modeler can understand what the model lacks to
match data. This is done within the context of the model

Improved models : Can learn the missing components of model and
generate improved models

Uncertainty quantification: Can obtain modeling error bounds

Generality : Can apply to any problem with data & a low fidelity model
that is asymptotically equivalent.

Turbulence, Transition, Combustion, High Enthalpy flows, etc

Much improved techniques for analysis and design of Aerospace
vehicles



Vision for the future

A continuously augmented curated database / website of high-
fidelity CFD solutions (and experimental data!) that are input to the
machine learning process

Users download and plug map into their code.

[] turbgate.engin.umich.edu 7 O g‘m &

| M-Library E Reload in MLibrary | E Codes E Notes [D__I Personal E Work E Conferences [D__I Shows [D__I Compilation E Proposals E Videos [D__I Computer stuff [D__I Inspirational

IOWA STATE
UNIVERSITY

Pivotal.

Turbulence Modeling Gateway s

users

Home Team Research Publications Support~

Welcome to the Turbulence Modeling Gateway Server. The goal of our project is to develop the science behind data driven turbulence
modeling and demonstrate the utility of large-scale data-driven techniques in turbulence modeling. Our work involves the
development of domain-specific learning techniques suited for the representation of turbulence and its modeling, the establishment Enter email

Email

of a trusted ensemble of data for the creation and validation of new models, and the deployment of these models in complex
aerospace problems. We are funded by the LEARN (Leading Edge Aeronautics Research for NASA) program, through the NASA  Password

Aeronautics Research Institute (NARI). Password

This is a collaborative effort between the University of Michigan, Stanford University, lowa State and Pivotal Inc. We also consult with

Boeing Commerical Airplanes and interact with NASA Langley Research Center. Login



Turbulence models of the future

* Traditionally, RANS models have been provided through:
— A complete set of PDEs with modeled closure terms
— A number of “fitting” coefficients
— A printed article to deliver all this content

* |n the future, we expect to provide:

— A set of PDEs comprising all that is well known about the
behavior of the turbulence

— An auxiliary piece of software that can be embedded into a
RANS solver and that contains the machine-learned closure
terms (appropriately version controlled)

— A software repository with clear explanations of the datasets
that were used to create the “model”

— Possibly multiple versions of the “models” that have been
trained with different datasets and are more appropriate for
different flow conditions.



Continuing work & Focus of Phase |l

More comprehensive (but selective) data
=>» Targeted test cases
=» NASA’s benchmark cases

Work on ML algorithms (not very well developed for things other
than clicking ads)

Optimizer needs further development
Build statistical framework (path to UQ)

Fill in theory where data is missing & for asympotics

Full integrated inversion / learning with Billions of data points
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Dissemination

Participation in NASA/Stanford Summer Turbulence Research
Program (June 2014)

Presentation at NASA Langley (September 2014)

Visit by NASA Tech. Monitor to Michigan (Dec 2014)
Collaboration with Big data analytics group at NASA Langley
Discussions with several NASA researchers (Ames, Langley)

Interest from GE Aviation to fund pilot project
Discussions with AFRL, Dayton

3 Conference proceedings papers

Journal papers under preparation

Project website

Planning a symposium on New Directions in Turbulence Modeling
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Backup slides



Disclaimer on RANS models

* Single point closures based on local "'well-behaved’ quantities
=» Miss out on spectral and structural information
=» Do not process disparity of turbulence scales
=» Cannot distinguish inactive motions and low frequency
unsteadiness

* But, room for improvement is vast



Onera M6
 Lift and drag coefficient match to within 2%
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Neural Networks

Inputs Hidden Layers



Results — Budget

e Source term computed from budget balance

True —
0.0048 — Predicted —
0 p—
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s
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Great match even with noisy data
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Predicted value of MulProduction
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Model Problem

* Use Spalart-Allmaras as a model problem
— Easy to generate flow data
— Analytic functional form

— Known feature set
* Learn (parts of) the source term

* Separate flaws in training procedure vs. errors
in data fit.



Implementation

fori=1, Niter
call Mean_RHS
call Turb_RHS
call Compute_Jacobians
call Solve

call Update
End

Subroutine Turb_RHS
call ComputeEddyViscosity
call Turb_Convection
call Turb_Diffusion

call Turb_Source
End Subroutine




Implementation in Turb_Source
double* fann_inp = (double*)malloc(size_inp); // Inputs to Map

double* fann_out = (double*)malloc(size_out);  // Outputs of Map

// Create input deck

int counter_inp = 0; int counter_out = 0;

for (inticv = 0; icv < ncv; icv++) {
fann_inp[counter_inp] = Rt[inp]; counter_inp ++;
fann_inp[counter_inp] = kine[icv]; counter_inp ++;
fann_inp[counter_inp] = omegalicv]; counter_inp ++;
}

// Obtain output

int ierr = fann_model(ninput_query, ncv, fann_inp, fann_out);

// Inject
for (int icv=0; icv<ncv; icv++) {
Source[icv] = fann_out[counter_out]; counter_out++;

}



