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1 Abstract 

Novel, Multidisciplinary Global Optimization Under Uncertainty is a two year research effort sponsored 

by the NASA Leading Edge Aeronautics Research for NASA (LEARN) project. The research focused on 

developing and evaluating the Probabilistic Robust Optimization of Complex Aeronautics Systems 

Technology (PROCAST), which combines methods from statistical modeling – Bayesian Networks 

(BNs) for probabilistic modeling and prediction – and complex adaptive systems – a method of 

constrained optimization. The goal of PROCAST is to generate solutions for complex system problems 

characterized by three key attributes: multiple competing objectives, uncertainty impacts, and network 

effects. A problem that displays these three characteristics is the management of air traffic in busy, highly 

interconnected regions of the National Airspace System (NAS) such as metroplexes. A metroplex consists 

of multiple busy airports in close vicinity of each other. Metroplex airports and airspace are key capacity 

bottlenecks within the NAS. In this application, PROCAST aims to provide optimized and de-conflicted 

sequencing and scheduling of arriving/departing flights that is robust to uncertainties such as forecasting 

errors, and variations in air traffic operations. 

Over the course of the two year research effort we developed a system architecture and simulation 

framework to evaluate the viability of PROCAST applied to integrated arrival, departure, and surface 

traffic scheduling in the New York metroplex – comprised of three busy airports: John F. Kennedy 

International (JFK), Newark Liberty International (EWR) and LaGuardia Airport (LGA). 

Accomplishments include the development of airport surface and terminal models for NASA’s Surface 

Operations Simulator and Scheduler (SOSS), the development of an integrated, multi-airport arrival and 

departure scheduler, the development of BNs to probabilistically model taxi-times at the airports, and a 

method to account for probabilistic transit times into traffic scheduling. Improving the modeling and 

predictability of taxi times and wheels-off times, and traffic scheduling methods which are robust to their 

uncertainties, are key factors in improving the efficiency of airport operations. We evaluated the 

effectiveness of using BNs in arrival-departure scheduling compared with other, simpler probability 

models, and with no probability modeling as well. The use of probabilistic modeling for taxi-time 

prediction makes the integrated arrival and departure scheduling more robust to uncertainties and 

therefore more likely to be useful in future air traffic management (ATM) decision support tools. 

The results of this research demonstrate that the PROCAST scheduling using probabilistic BN models of 

taxi time for departure trajectory prediction was able to significantly improve the performance of 

departure traffic from JFK, EWR and LGA airports for the two different real-world traffic days evaluated, 

in comparison to scheduling using deterministic models, or simple probabilistic Gaussian models, of 

departure taxi time. The PROCAST scheduling with BN models of taxi time was able to significantly 

reduce the average total delay of departures at each airport, and likely improves the departure throughput 

at each of the airports, compared to the deterministic modeling. Average total delay reductions ranged 

from 4.0 minutes for LGA departures for a 2-hour period of traffic on 3/16/2012 to 29.0 minutes for JFK 

airport for a 2-hour period of traffic on 7/25/2012. While the results are promising, our hypotheses of 

improved traffic performance through incorporation of uncertainty into traffic planning, increased 

accuracy of transit time uncertainty modeling, and increased sampling uncertainty models were not 

conclusively confirmed, and further investigation is warranted. In addition, there are many areas for 

future research, including alternative approaches to BN modeling of aircraft transit, holistic integration of 

4D trajectory prediction for scheduling and accounting for the influence of scheduling on the predicted 

trajectory, implementation of alternative methods for selecting the “statistically best” scheduling solution 

among the alternative set of scheduled traffic futures, or otherwise incorporating the probability 

information into the traffic scheduling, and enhancing SOSS to rigorously model multi-airport 

interactions and terminal airspace traffic. 
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2 Project Overview 

In Phase I we performed a PROCAST proof-of-concept experiment applied to the management of traffic 

at a single airport in the New York metroplex. The Phase I effort included modeling, simulating, and 

evaluating the performance of PROCAST on the JFK airport surface and terminal airspace. We selected 

JFK because of the operational challenges it faces such as significant arrival and departure delays, and 

complex airspace and surface arrival-departure interactions. The proof-of-concept experiment compared 

the performance of PROCAST operations against baseline operations that represent traffic under current-

day traffic management procedures. We simulated current operations for JFK, and simulated future 

concepts and procedures using PROCAST and SOSS. We then compared the metrics from the two 

simulations to quantify the benefits provided by PROCAST. The motivation for the Phase I research, as 

well as a detailed description of the assumptions, methods and results of the Phase I proof-of-concept 

experiments are documented in the Phase I Final Report [SS15] and two conference papers [AS14] 

[AS15]. Our Phase I proof-of-concept experiments showed that PROCAST can provide significant 

benefits at a single-airport, and the potential benefits could be much larger if PROCAST is applied to 

coordinate traffic at multiple metroplex airports.  

The primary objective of Phase II is to expand the application of PROCAST to scheduling traffic to 

multiple airports in the New York metroplex. Phase II includes enhancing SOSS by creating airport 

surface and terminal models of EWR and LGA [RW12]; enhancing PROCAST to perform integrated, 

multi-airport arrival and departure scheduling; enhancing the probabilistic Bayesian Network taxi-time 

models for JFK from Phase I; and creating Bayesian Networks to probabilistically model taxi-times at 

EWR and JFK. Outreach to subject matter experts helps identify key factors to consider in taxi-time 

modeling and airport traffic scheduling and management. Improving the modeling and predictability of 

taxi times and wheels-off times is a key factor in improving the efficiency of airport operations. NASA is 

actively pursuing research into taxi-time prediction modeling, simulation, and evaluation. Accurate taxi 

time estimates support departure management strategies such as holding departures at their gates, 

optimizing the use of departure runways at origin airports, and improving arrival time prediction at 

destination airports [HL15]. It should be noted that in Phase II we no longer use an explicit optimization 

routine in the PROCAST solution architecture because the benefit did not justify the computational 

complexity. Instead, we focus on developing and investigating the use of BNs to probabilistically model 

and predict taxi-times on the airport surface within the PROCAST framework. We evaluate the 

effectiveness of using BNs in arrival/departure scheduling compared with other, simpler probability 

models, and with deterministic transit time modeling. As in Phase I the BNs provide a means of 

incorporating probabilistic modeling into arrival and departure scheduling in a computationally efficient 

manner. Our Phase II work was organized into six high-level tasks depicted in Figure 1. 
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Figure 1. Phase II Technical Tasks 

3 PROCAST Architecture and Bayesian Networks 

One of the main goals of our Phase I and Phase II research efforts is to make the management of surface-

terminal air traffic operations robust to uncertainties such as unpredictable errors in the gate pushback 

times, taxi times, and terminal airspace traversal times forecasted for flights. To achieve this goal, we use 

BNs to incorporate uncertainty models into taxi-time modeling and prediction in a computationally 

efficient manner. A large number of random variables are required to sufficiently model uncertain 

network effects in the surface-terminal operations. Due to the complex nature of subsystem interactions, 

most of these random variables are dependent; so modeling their joint effects (i.e., joint probability 

distribution) requires a large number of Conditional Probability Distributions (CPDs). To address these 

challenges, we make use of BNs for incorporating probabilistic modeling into trajectory prediction and 

aircraft scheduling [AS15]. 

BNs model probabilistic relations among random variables. BNs model probabilities based on analysis of 

data. BN probability models are learned from training data, and then once trained, are used to make 

predictions about new data. BNs can be used for predictive modeling, pattern recognition, classification 

and regression [JH13]. BNs are probabilistic graphical models that represent a set of random variables 

and their conditional dependencies via a directed acyclic graph. BNs provide advantages over traditional 

probabilistic approaches by compactly encoding complex conditional distributions over a high-

dimensional space and by providing a separation between solution method and model. In the context of 

the traffic management application, we use BNs to generate future trajectory forecasts based on the 

current measured positions and speeds of aircraft as well as reflected in simulated operational data 

[SS15]. 

The PROCAST architecture for the metroplex scheduling problem is shown in Figure 2. PROCAST first 

predicts a large number (e.g., thousands) of possible future traffic scenarios by sampling the BN models 

of transit time developed from analysis of historical traffic data. Each potential future traffic scenario 

consists of a possible future trajectory for each of the flights that is currently active within the airport 

surface or terminal airspace, or is expected to enter the airport surface or terminal airspace within a 

certain look-ahead time horizon. To predict the 4D trajectory of a flight, PROCAST assumes that the 

physical 3D route of the flight will remain fixed. PROCAST estimates the flight’s crossing times at the 
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key nodes on its fixed 3D route by sampling the BN transit time models. The predicted 4D trajectories of 

a flight vary among the predicted future traffic scenarios in their crossing times at the key nodes of the 

flight’s 3D route. The time-variations between the trajectories of a flight among the future traffic 

scenarios are the result of sampling the probabilistic BN models of transit time derived from historical 

traffic data. For this project, historical traffic data were obtained from previous SOSS simulations of 

multi-airport traffic; for operational implementation, traffic data may be obtained from recorded traffic 

surveillance data or other sources.  

 

Figure 2. PROCAST Metroplex Integrated Arrival, Departure, Surface Scheduling Architecture 

The randomness in the time dimension of the predicted 4D trajectories of a flight is the result of sampling 

the pre-computed probability distributions. The distributions describe the probability of a flight arriving 

to or leaving from certain fixed 3D nodes at a specific time. The probability distributions are computed 

using a BN that is trained from simulated data and conditioned on several influencing factors. Factors 

include the current measured traffic state of the airport-terminal system (i.e., the locations of all aircraft). 

The key points in the 4D trajectories of flights at which there is temporal uncertainty in the transit or 

occupancy time are the gates, spots, runway departure nodes, airspace interaction fixes, and 

departure/arrival fixes. 

After generating a number of potential futures, PROCAST performs scheduling for each of the potential 

futures. That is, for each future, PROCAST revises the time dimension of the predicted 4D trajectory of 

each flight in the future as needed to comply with capacity limits of airport and airspace resources such as 

the runways and arrival and departure fixes. This produces a planned 4D trajectory for each flight. The 

basic objective of a scheduling algorithm in air traffic control automation is to match traffic demand and 

airport capacity while minimizing delays. The scheduling algorithm automatically determines (a) the 

order or sequence in which each aircraft should land, depart, or cross a particular fix, and (b) the time that 

each aircraft in the sequence should land, depart, or pass over a specified fix. The underlying scheduling 

algorithms use a First-Come First-Served (FCFS) approach. An earlier study [CA98] showed that 

scheduling aircraft according to an FCFS sequence based on estimated times of arrival produces a 

schedule that is considered to be both fair to air carriers and efficient in terms of minimizing delays that 

must be absorbed when demand exceeds capacity. 

Once scheduling has been performed for each of the futures, probabilistic analysis is used to choose the 

“statistically-best” traffic schedule. PROCAST currently does this by selecting the “statistically best” 

future from among the set of scheduled futures. By applying this methodology, PROCAST selects a 
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schedule for the flights in the planning time horizon. The selected traffic schedule specifies a planned 4D 

trajectory for each flight which prescribes gate pushback and takeoff times for each departure or arrival 

fix crossing and landing times for each arrival. PROCAST implements this set of control actions, i.e., the 

collection of landing and fix crossing times for arrivals and takeoff and gate pushback times for 

departures (also called flight release times), to manage the traffic. In the experiments described in Section 

7, the flight release times are sent to SOSS at the end of each scheduling cycle. The process is repeated at 

the next cycle using the latest available information. 

3.1 Sources of Taxi Time Uncertainty at New York Airports 

The purpose of PROCAST is to make the management of surface-terminal air traffic operations robust to 

uncertainties in the gate pushback times, taxi times, and terminal airspace traversal times forecasted for 

flights. To better understand real-world factors that influence uncertainties in the taxi times at JFK, EWR, 

and LGA, we held discussions with Ralph Tamburro of the Port Authority of New York/New Jersey 

(PANYNJ) and Bill Cotton of Cotton Aviation Enterprises (and former Manager of Air Traffic and Flight 

Systems, United Airlines).  

In general, taxi times are affected by factors such as controller workload, fix restrictions and closures, 

runway queue length, one way alleyways in the ramp areas, and controller best practices to effectively 

manage departures such as sending consecutive departures to different fixes. For airplanes taxiing out at 

all three New York airports there are two factors influencing the time it takes to go from the gate to the 

runway liftoff: 1) the distance from gate to runway along with the taxi speed profile, and 2) the points on 

the taxi route that require clearance to proceed. 

The taxi distance is measureable but the taxi speed varies by aircraft type and individual pilot preference. 

The pushback, engine start and initial movement processes take longer on very large aircraft. Four 

engines take twice as long to start as two, and heavy aircraft will accelerate and decelerate slower than 

light aircraft. Nominal taxi speeds range from 10 to 20 knots but may be slower or faster depending on 

taxiway surface condition, visibility, obstructions and other traffic, or activities in the cockpit. 

At the three New York airports, continuous movement from the gate to takeoff is not possible because 

clearances are required for gate pushback, ramp departure, hold points in the taxi clearance, and runway 

takeoff. Each is described below in greater detail. 

3.1.1 Gate Pushback 

Once the airplane is buttoned up and ready to push, the pilot will call either ramp control or ground 

control to request pushback clearance and when received, and relay that to the tug crew to commence the 

pushback. While nominally that call would happen at the scheduled departure time, it is quite variable, 

from up to 10 minutes before departure time to perhaps hours late during a maintenance or weather 

irregularity. The distribution is skewed to the late side and the median and standard deviation should be 

available from the Department of Transportation’s on-time departure statistics. Each airline also keeps 

track of the difference between scheduled and actual departure time and has at least a dozen codes 

indicating what management function the delay will be assigned to (both airline and ATC). 

3.1.2 Ramp Departure 

Clearance must once again be requested at the spot for transition from the non-movement area (ramp 

control) to the movement area of taxiways and runways (ground control). The granting of the taxi 

clearance from this point is influenced by the workload of the ground controller (being able to break into 

the frequency to request taxi) and by the actual presence of traffic on the taxiway that has right of way 

over the new request. Not all gates on the airport are used equally so the use of these spot transitions also 

varies with gate use. The ability of a controller to clear an aircraft from such a spot to the runway is very 

dependent on the spot's location with respect to other taxiway traffic. 
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3.1.3 Hold Points in the Taxi Clearance 

These may be particularly busy taxiway nodes or nodes where the taxi route crosses another runway. 

They are indicated in the clearance as, "hold short of Bravo", or "hold short of Runway 4 Left". The 

amount of time spent waiting at these hold points for further clearance depends entirely on the volume of 

traffic on the taxiways, and runways to be crossed. 

3.1.4 Runway Takeoff Clearance 

The physical limit to the capacity of the runway is the requirement for a previous departure to be 6,000 

feet into its takeoff roll (for a “Large” wake category aircraft) before clearing the next takeoff. This 

location approximates most airliner ground rolls before rotation so the practice is known as 

"nosewheeling". Unfortunately, the New York controllers rarely get to use this procedure because of 

departure constraints imposed on the tower by departure control or Air Route Traffic Control Center 

(ARTCC) requiring a greater separation between departures. Constraints requiring greater separation 

between departures are: 

 Wake turbulence criteria 

 Noise abatement 

 Arrival crossing runway 

 Departure fix restriction 

 Non-standard weather departure route 

 Overhead flow constraint 

 Ground delay program for destination weather or sector load 

 Ground stop due to weather 

Determining the appropriate departure delays is challenging for controllers and traffic managers. The 

wake categories of the flights at these three airports must be learned as a function of the schedule and it is 

still hard to predict the takeoff order based on when they leave the gate. Some departure restrictions are 

static and can be gleaned from the FAA Air Traffic Control System Command Center website but the 

dynamic ones are only known at the time they are being used. Weather creates its own set of problems 

predicting the time, severity, geographic location and extent and the resulting re-routes and ground delay 

programs are as varied as the weather itself. Using a single “typical” bad weather day to juxtapose a good 

day leaves something to be desired. The extent of the delays imposed on takeoff clearance determines the 

amount of the queue developing at the runway as a function of demand during the day, and the resulting 

time to takeoff. These challenges highlight the need for the development of air traffic management 

decision support tools to help air traffic managers and air traffic controllers more effectively manage 

departure traffic at metroplex airports such as those in the New York area. 

4 Probabilistic Multi-Airport Traffic Scheduling 

This section presents the current implementation of the probabilistic multi-airport traffic scheduling in 

PROCAST. Probabilistic multi-airport traffic scheduling is achieved by 1) applying a FCFS scheduling 

methodology to a single predicted future for the set of aircraft being scheduled to generate a scheduled 

future for the set of aircraft, 2) applying this methodology to each of the predicted futures for the set of 

flights being scheduled, and 3) selecting a single scheduled future from among the set of scheduled 

futures as the basis for assigning gate pushback times to departures and arrival fix crossing times to 

arrivals. The gate pushback times of departures or fix crossing times of arrivals robustly comply with the 

inter-aircraft spacing minima at the runways of the airports and the arrival and departure fixes of 
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bounding the terminal airspace of the metroplex, accounting for uncertainty in the taxi times of the flights 

and interactions of the multi-airport traffic at the shared arrival and departure fixes. We first present the 

algorithms for scheduling a single future for flights to comply with inter-aircraft spacing minima at the 

airports’ runways and metroplex’ s fixes (Section 4.1) We then present the methodology for selecting the 

a single scheduling solution from among the set of scheduled futures (Section 4.2). 

4.1 Multi-Airport Scheduling For a Single Future 

The design of the Phase II arrival and departure scheduler is based loosely on the concepts and 

capabilities of the Departure Management System (DMS) and Time Based Flow Management (TBFM) 

automation system currently in use at NY area airports.  Departures at JFK are metered by a DMS 

operated by the PANYNJ. The DMS computes recommended target movement area entry times (TMATs) 

for individual departure flights to keep movement area taxi times and departure queue lengths 

manageably small, and sends these TMATs to the airlines and aircraft operators. The airlines and aircraft 

operators then manage gate pushback times of individual departure flights to adhere to these TMATs. To 

compute the TMATs, the DMS uses proprietary algorithms that perform ration-by-schedule allocation of 

departure runway availability to departure flights while maintaining equity among the multiple airlines 

vying for the utilization of the departure capacity of the airport. Arrivals at JFK are metered by TBFM 

which assists the ARTCC Traffic Management Coordinators (TMCs) and air traffic controllers with 

planning and controlling major-airport arrival traffic flows. TBFM enables orderly and metered-to-

Terminal Radar Approach Control (TRACON)-capacity delivery of arrival traffic over the arrival-fixes 

(i.e., for entry into the terminal airspace). TBFM’s time-based scheduling engine, called the Dynamic 

Planner (DP), performs the key time-based arrival scheduling function, and can be adapted to perform 

multi-airport traffic scheduling. The PROCAST scheduler is largely based on the algorithms and 

functionality of TBFM and the DP. A key challenge in developing a metroplex integrated arrival and 

departure scheduler is to manage the use of shared arrival and departure fixes across the metroplex 

airports. 

In this section, we provide an overview of the TBFM Dynamic Planner (Section 4.1.1) and present our 

emulation of traffic scheduling emulator (Section 4.1.2). We discuss the initialization and operation of the 

scheduler (Section 4.1.3), methods for spacing and sequencing aircraft (Sections 4.1.4 and 4.1.5, 

respectively), the process for scheduling aircraft at scheduling points (Section 4.1.7), and how per-aircraft 

delay to satisfy the schedule is allocated to the flight’s planned 4D trajectory (Section 4.1.8). 

4.1.1 The Dynamic Planner 

TBFM’s Dynamic Planner performs the key time-based arrival scheduling function, and can be adapted to 

perform multi-airport traffic scheduling. DP can handle up to five different airports within a TRACON 

and treats them as separate entities from the scheduling perspective. A Trajectory Synthesizer (TS) 

predicts the Estimated Time of Arrival (ETA) at an outer meter arc, the meter-fix, the Final Approach Fix 

(FAF), and the runway threshold. These scheduling points are collectively called Reference Points.  The 

DP algorithm uses these ETAs to compute de-conflicted Scheduled Time of Arrival (STA) at the meter 

fix and the runway threshold.  The DP first computes STAs to the meter-fix for each arrival-stream, while 

retaining the FCFS order within the traffic stream (these similar traffic streams are called stream classes). 

The DP may have to delay some aircraft to maintain the mandatory separations between successive 

arrivals at the meter fix. STAs at the meter fix and nominal fix-to-runway travel times are then used to 

generate ETAs at the runway. Runway STAs are then computed by de-conflicting the runway ETAs for 

individual arrival flights with respect to their predecessors to satisfy wake-vortex separation constraints, 

acceptance rate constraints, and runway occupancy restrictions. The order in which aircraft are chosen for 

determining their runway STAs was computed by an Order of Consideration (OOC) algorithm [W00]. If 

the delay assigned to a particular aircraft is bigger than the delay absorption capacity (user-specifiable 

parameter) of the TRACON, then the excess delay was fed back to the ARTCC, and ETAs to the meter 

fix were updated accordingly. The TRACON delay absorption limit is a user-specifiable parameter of the 
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DP scheduling algorithm. This parameter is also called the Allowed Maximum Delay Threshold 

(AMDT). The scheduling process was then repeated for the next flight in the OOC. 

4.1.2 Baseline Traffic Scheduler Emulation Functionality 

The scheduler developed for this research, referred hereafter as the baseline scheduler, was modeled on 

the TBFM DP with a reduced number of features.  It produces a simultaneous, coupled, multi-airport 

scheduling solution for both arrivals and departures.  While the research focused on the New York 

metroplex, the baseline scheduler is designed to handle arbitrary metroplex geometry with an arbitrary 

number of airports, departure fixes, arrival fixes. To simplify the scheduler attributes, boundary 

acceptance rate constraints were eliminated leaving the core separation problems at the metering fixes, the 

runways and the departure fixes.  Furthermore, wake-vortex separation constraints and runway occupancy 

restrictions were reduced to a single separation constraint (expressed in time) for both arrivals and 

departures at both runways and metering fixes. Also, it was assumed that no delay to meet runway or fix 

capacity limits could be absorbed within the TRACON.  All delay feedback had to be absorbed prior to 

the arrival fixes for arrivals and at the gate for departures.  Finally, arrivals were given complete priority 

over departures at the runway, so that no arrival landing was ever delayed to accommodate a departure 

takeoff.  Figure 3 illustrates the high-level functionality of the baseline scheduler. 

 

Figure 3. High-level Functional Description of the Baseline Multi-airport Scheduler  

There are four main operations for the scheduler:  1) spacing arrivals at the arrival fix, 2) scheduling the 

arrivals to the runways, 3) spacing the departures at runways (subject to arrival constraints), and 4) 

scheduling the departures to the departure fixes.  The scheduler has only one point of control for metering 

aircraft.  For arrivals, the scheduler can specify a crossing time (STA) at the metering fix, and for 

departures the scheduler can specify a time for leaving the gate. Once a departure begins taxiing, or an 

arrival crosses the arrival fix, it is considered frozen and its schedule can no longer be updated.  

4.1.3 Scheduler Initialization 

There are two main components to initialize before the main scheduling functions can be employed.  

These are the TRACON model, and the trajectory modeler. 

4.1.3.1 TRACON Model 

Developing the TRACON model is the initial step for setting up the scheduler. An arbitrary TRACON 

model is depicted in Figure 4. 
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Figure 4. Sketch of an Arbitrary TRACON 

A data file defining the TRACON indicates the number of arrival fixes, departure fixes, airports, and 

runways in the scenario. In this project, the SOSS adaptation data files for JFK, EWR and LGA defined 

these points.  These points serve as both the scheduling points for the model and a means to categorize the 

aircraft. Each departure and arrival fix has a stream class to further separate classes of aircraft.  In the 

developed model, separate jet and prop stream classes were implemented, however, only the jet stream 

classes were used due to the nature of the traffic inherent in the FAA traffic schedules used for the 

project.  In the software, each scheduling point (e.g. runway, fix and stream class) is represented with a 

special array designed to keep track of all the flights assigned to that particular reference point.  

4.1.3.2 Trajectory Transit Time Model 

Transit time models are needed to obtain the ETA of an aircraft to one of its important scheduling points.  

Figure 5 illustrates the times needed for PROCAST and the trajectory segments that they represent. 

Airport 1

Airport 2

Meter Fix 1

Meter Fix 2

Meter Fix 3

Meter Fix 4

Arrivals

Departure
Fix

Departure
Fix

Departure
Fix

Departure
Fix



Novel, Multidisciplinary Global Optimization Under Uncertainty, Phase II Final Report  Version 1 

Architecture Technology Corporation   October 31, 2016 

10 

 

 

Figure 5. Sketch of Required Transit Times and the Important Points of Interest 

For departures, since the only point of control for the scheduler is the gate push time, the time to the 

runway from the gate is the essential time to capture.  For spacing at the departure fix, the transit time to 

the departure fix is needed. 

For arrivals, the time at the metering fix and the time to the runway are the important times.  The meter 

fix crossing time is the point of control that the scheduler has for arrivals, so the scheduler is not 

concerned with the time required to taxi to the gate. 

Traditionally, the ETAs of an aircraft to various Reference Points for scheduling would be provided by a 

trajectory modeler that predicts the future state of an aircraft using one of several trajectory modeling 

techniques available. In PROCAST, the ETAs of an aircraft to various Reference Points for scheduling 

are provided by sampling the probabilistic BN models of transit time or by tabular transit data where no 

probabilistic model is available, and cascading the successive transit times from an initial time at the first 

point in the flight’s 3D route. In this project, tabular transit data representing “unconstrained” transit of a 

flight was obtained by running SOSS and allowing all flights to proceed without any interference; that is, 

with the SOSS Conflict Detection & Resolution (CD&R) functionality turned off. 

4.1.4 Scheduler Operation 

Once the scheduler is configured with TRACON and flight data, the main scheduler operation begins.  

The data is received from each of the SOSS processes in the operation environment, and the scheduling 

cycle is initiated. 

The scheduling cycle starts with the arrivals. Our schedulers give complete priority to arrivals over 
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the future. Arrivals are first sorted and spaced at the arrival fixes and then scheduled to their respective 

runway using an OOC algorithm (see Figure 6).   

 

Figure 6. Arrival Spacing and Scheduling within the TRACON 

At the arrival fixes, the flights are sorted into their respective stream classes in FCFS order and then each 

flight is delayed as needed so that the appropriate time spacing exists between all the flights. Next, the 

OOC algorithm is used to determine the sequence in which the arrival flights should be scheduled at the 

runway.  Using this sequence, each arriving flight is then scheduled to its respective runway.  Any delay 

that is added during the process is fed back to the arrival fix, since no delay is absorbed in the TRACON.   

The departure operation is largely the same series of operations, but operated from the runways to the 

departure fixes.  The flights are first spaced at the runways and then an order of consideration algorithm is 

used to determine the sequence of spacing at the departure fixes.  Here, as well, aircraft are sorted into 

their respective stream classes.  The operation is shown in Figure 6.  The major distinction between the 

operations is that runway usage for departures is constrained by the arrival operations.  This makes the 

spacing operations more complex. 
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Figure 7.  Departure Spacing and Scheduling within the TRACON 

The algorithms that perform the spacing and scheduling operations are similar regardless of whether the 

operation is an arrival or a departure.  Within the code, often the identical algorithm can be used for both, 

just by changing the input parameters. The explicit details on the spacing and sequencing operations are 

covered in the remaining sub-sections. 
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Figure 8.  Basic Spacing Functionality 
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Figure 9.  Basic Spacing Flow Diagram 

For departures, the operation is complicated by the fact that arrivals are also using the runway and thus 

serve as a constraint at the runway threshold.  To space with constraints, the algorithm maintains a list of 
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algorithm spaces the departures among the arrivals as shown in Figure 10.  Flow diagrams in Figure 11 

show exact method.  The left side of the figure shows the basic spacing algorithm with a single function 

added to check the constraints at the end of each spacing sequence.  The constraint-check operation is 

then shown in the right side of the figure, where location (in time) of the flight to schedule is checked 

against all the constraints.  
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Figure 10.  Spacing with Constraints 

 

Figure 11.  Flow Diagram for Spacing with Constraints (Left) and the Constraint Check Algorithm (Right) 
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4.1.6 Order Of Consideration 

The Order Of Consideration algorithm is used to determine the scheduling sequence of flights from their 

initial starting locations (i.e. either runway or arrival fix) to their final scheduling points.  The identical 

algorithm is used for both arrivals and departures, so the start and end points are abstracted as the start 

points or the schedule points. Two sequences of the OOC algorithm are shown (see Figure 12 and Figure 

13) to illustrate the process. In Figure 12, the start points are shown at the top with their spaced sequences 

of flights that all need to be scheduled to the schedule points (circles) below. First, the earliest flights 

(with respect to its respective start point (e.g. fix)) from each start point are chosen and placed in a special 

array, the scheduling bin, for scheduling consideration.   

 

Figure 12.  Initial Order of Consideration Sequences 

Of the flights in the scheduling bin, the time that each flight is estimated to reach its scheduling point (e.g. 

runway) is evaluated.  Of the scheduling bin flights, the flight that reaches its respective scheduling point 
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using an operation that is totally independent of the OOC algorithm. On the next sequence of the 

algorithm, the start point which previously provided the scheduled aircraft provides its next earliest flight 

to fill the gap in the schedule bin (see Figure 13), and the process is repeated.  Figure 14 captures the 

process in a flow diagram. 

 

Figure 13.  Successive Order of Consideration Sequences 
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Figure 14.  Successive Order of Consideration Sequences 

4.1.7 Scheduling at Scheduling Points 

Scheduling flights at the scheduling points involves finding an appropriate time slot for the currently 

schedule flight amongst all the flights previously scheduled at the particular schedule point.  Nominally, 
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Figure 15.  Nominal Scheduling Case 

 

 

Figure 16.  Rarer Scheduling Case 
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Figure 17.  Flow Diagram for Scheduling 
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point (departure fix in the case of departures). To resolve this conflict, delay beyond what is required at 

the scheduling point is needed.  Of course, any delay added at the runway to resolve a conflict with 

arrivals may create a conflict in the departure stream.  

To resolve this problem both the schedule point algorithm and the constrained spacing algorithm are run 

in an iterative fashion, each adding delay until no conflicts are found. Figure 18 shows the flow diagram.   

If delay is added during either of the operations, then both need to be re-run to insure a conflict free 

solution. Once a sequence is run with no additional delay added, the algorithm exits.  

 

Figure 18.  The Iterative Solution for Simultaneous Solution of Runway and Departure Fix Conflicts 

4.2 Schedule Specification From Multiple Scheduled Futures 

PROCAST scheduling works as follows. The BN models are used to generate a set of, say, 100 futures 
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to construct a predicted 4D trajectory for each departure. By repeating this procedure, the set of current 

flight states is extended to a number of distinct futures, each one describing, plausibly, what might happen 

if the traffic was be allowed to run its course without further intervention. 
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At this point, PROCAST schedules the arrivals and departures in each future. To estimate times of arrival 

for flights to the scheduling points, PROCAST uses the predicted transit times of the flights (inherent in 

their predicted 4D trajectories) in that future. The traffic scheduler assigns release time to each flight as a 

gate pushback time for each departure that is at the gate, an arrival fix crossing time for each arrival that 

has not passed the arrival fix, and all near future flights.  Because the predicted transit times for a given 

(departing) flight differ from one future to the next, the release times the traffic scheduler assigns to 

flights in each future to meet constraints at the runway and the fixes will be different. All of these release 

times are in the future, i.e., later than the current simulated moment. 

Once scheduling has been performed for each of the futures, probabilistic analysis is used to choose the 

“statistically-best” traffic schedule. PROCAST currently does this by selecting the “statistically best” 

scheduled future among the set of scheduled futures, using a method applied in Phase I of the project. In 

this method, a particular scheduled future is selected by 1) successively applying a data outlier filtering 

technique to the scheduled futures, 2) arbitrarily selecting a scheduled future from among the remaining 

scheduled futures. Consider the delay of a flight in a given future is the difference between its final 

scheduled an initial estimated gate pushback or fix crossing times. The outlier filtering technique 

eliminates any futures which, for a given flight, prescribe delays to that flight which lie outside the range 

of the mean +/- 1 standard deviation of the delays for that flight. The outlier filtering technique is applied 

for each successive flight to the current set of scheduled futures, where flights are sequenced in order of 

greatest to least mean delay. As the scheduled futures are filtered from the set, the mean and standard 

deviation for the flight are recomputed. The following pseudo-code gives the algorithm: 

Method selectBest( futures ) returns future 

1. Let delays(f, j) be a matrix; the delay of flight j in future f. 

2. Let meanDelays(j) be the mean delay of flight j across all futures. 

3. Let stdDelays(j) be the standard deviation of the delays for flight j across 

all futures 

4. Sort meanDelays in decreasing order 

5. Sort stdDelays so that the flights are in the same order as in meanDelays 

6. Sort delays(f, j) so that the flight columns are in the same order as in 

meanDelays 

7. For each flight J (as ordered in meanDelays) 

a. Compute the range meanDelays(J)  stdDelays(J) 

b. For each future F 

i. If delays(F, J) is outside of that range, then mark future F for 

deletion 

c. If all futures are marked for deletion, then exit the loop 

d. Delete all of the marked futures (i.e., down-select) 

i. Remove from the set of futures 

ii. Remove the corresponding rows of delays matrix 

e. If exactly one future remains, then exit the loop 

f. Recompute the meanDelays and stdDelays from the remaining futures.  

N.B., this can be restricted to just flight J+1. 

8. Return an arbitrary future from the set of remaining futures 

This procedure will approximately select a future in which delays for each flight are near the mean for 

that flight. In doing so, it will favor flights whose mean delay is greatest. However, note that re-

computing the means and standard deviations after each down-select (step 7f) complicates this 

explanation. 
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By applying this methodology, PROCAST selects a scheduled future for the flights in the planning time 

horizon. The scheduled future specifies a planned 4D trajectory for each flight which prescribes gate 

pushback and takeoff times for each departure or arrival fix crossing and landing times for each arrival. 

PROCAST implements this set of control actions, i.e., the collection of landing and fix crossing times for 

arrivals and takeoff and gate pushback times for departures to manage the traffic. 

5 Bayesian Network Transit Time Modeling 

This section details the development of probabilistic models of departure taxi time using Bayesian 

networks for use in PROCAST’s multi-airport scheduling, beginning with the model of taxi time 

developed in Phase I.  Results reported in this section are primarily the work of the Intelligent and High-

Performing Systems Lab at Carnegie Mellon University, led by Dr. Ole J. Mengshoel1, and with 

participation from Aniruddha Basak, Priya Sundararajan, Erika Menezes, and Vinodh Paramesh.  

Our test system is a simulation of the New York metroplex.  This consists of three linked copies of SOSS, 

individually simulating the ground and air traffic at JFK, EWR, and LGA airports (note that our Phase I 

work extended SOSS to simulate air traffic in the TRACON).  Although the airport simulations are 

separate instances of SOSS, the airports modeled in SOSS share common arrival and departure fixes, and 

the SOSS simulations of the airports are synchronized at each scheduling cycle. At each scheduling cycle, 

the arrivals and departures of the three airports in the metroplex are scheduled in a unified manner, thus 

enabling de-confliction at the shared arrival and departure fixes. 

As in Phase I, the required BN models need to predict probability distributions for the taxi time of 

individual departures.  These distributions depend on the specifics of the departing flight and on ground 

traffic conditions at the departure airport during taxiing.  We expect the taxi times at each airport to be 

relatively independent of conditions at the other airports, and to have different random variables (BN 

nodes) which influence the taxi times. Thus, for simplicity, we developed a separate taxi time model for 

each airport. 

Our general approach, followed in both phases of the project, is to treat the taxi time, aspects of the 

taxiing flight, and the traffic levels at specific points on the tarmac as random variables in a joint 

distribution.  We use machine learning to create, from data, an approximation to this joint distribution, in 

the form of a BN.  During scheduling, we predict the posterior distribution of the taxi time, given the 

features of the flight, and approximations to the traffic levels. The BN allows us to compute this posterior 

probability distribution conveniently and efficiently. For scheduling purposes, we sample from the 

posterior distribution repeatedly, in order to construct a set of plausible future scenarios, based on the 

current state, and with appropriate probabilities. 

Our random variables include the taxi time from gate to runway, as well as from gate to two intermediate 

points along the trajectory of an aircraft on the airport surface.  If a flight is already taxiing at the moment 

when we are scheduling, and, if it has already passed either of these two points along its taxi path, then 

we will supply the actual time taken to reach the point(s) as evidence in order to produce a more refined 

prediction of the gate-to-runway time. 

We began, in Phase II, by revisiting the taxi time model for JFK from Phase I to understand its 

performance, and, to see if it could be improved.  We reconsidered certain design decisions made during 

Phase I, such as treating taxi time as a discrete variable, and using stage-wise sampling of the posterior 

distribution.  We also uncovered and characterized a particular aspect of the Phase I model that sharply 

limited its accuracy: zero probability values in Conditional Probability Tables (CPTs).  We explored a 

number of approaches to handling, mitigating, or removing these in the Phase II work reported on here.   

                                                      

1 See https://www.cmu.edu/silicon-valley/faculty-staff/mengshoel-ole.html 

https://www.cmu.edu/silicon-valley/faculty-staff/mengshoel-ole.html
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To compare different modeling approaches in a principled and systematic manner, one of our first tasks 

was to design and build an evaluation framework. This is software that uses a data set (of taxi times and 

other variables) to both train the BN model, and to compute metrics and display graphs of its prediction 

performance. Our initial evaluation framework used the test and training data from Phase I. This 

framework was only applicable to models of taxi time at JFK. Later, the framework was adapted to use a 

much more extensive and elaborate data set, covering all three airports. 

We also note that the Phase I BN model, which is specific to the JFK airport, refers to unique locations on 

the surface of JFK.  The points include spots, taxiway merge points, taxiway crossing points and runways. 

These points, and the structure of the BN, were arrived at by trial-and-error, with input from subject-

matter experts familiar with the airport.  In Phase II, we sought to generalize this model so that other 

airports (and other airport configurations) could be straightforwardly handled within the same 

generalization. To be clear: the generalization involves the choice of random variables and structure in the 

BN.  The parameters of the network are still derived from our data set by machine learning. 

As part of this generalization, we experimented with BN structure learning, in which the structure of the 

network, for a given set of random variables, is constructed from data using machine learning techniques.  

Moreover, we created a generalized set of features which are broader, much larger than in Phase I, and 

applicable for any airport.  

Putting these elements together, we constructed predictive models of taxi time for all three airports.  For 

JFK, a comparison of the Phase I model and the new data-driven model developed in Phase II showed a 

marked improvement in predictive power for the new model. In this comparison, both models were 

trained and tested with the Phase II data set. The models resulting from this data-driven approach were 

then used in our scheduling experiments, as described in Section 5.2.7. 

The following subsections discuss the details of these accomplishments.  Section 5.1 covers the 

evaluation and improvement of the Phase I taxi time model.  Section 5.2 covers the generalization of the 

model, use of the more extensive Phase II data set, and the creation of data-driven models for taxi time at 

all three major airports of the New York metroplex. 

5.1 Enhancements to Phase I Bayesian Network Taxi Time Models for JFK 

This section presents our Phase II methods and results of enhancing the Bayesian network models of taxi 

time for JFK that were developed in Phase I of the project. Here, we have developed a systematic and 

principled method to developing and evaluating transit time models for airports. The approach is based on 

an airport-specific Bayesian network transit time model, for JFK, developed in previous work. 

We begin with a description of the data set from Phase I that we used initially (Section 5.1.1).  We then 

discuss the initial evaluation framework and its components (Section 5.1.2). We also describe an 

algorithm that outlines the training, testing and evaluation of the framework in more detail. We then 

explain improvements relative to Phase I. First, we fixed the bug in an open source Bayes Net Toolbox 

software package (see Section 5.1.3) for MATLAB. Second, we tried a simultaneous sampling approach 

of generating futures which was much faster compared to the stage-wise sampling approach (Section 

5.1.4). Third, we investigated different approaches to fix the problem of zero probability values (Section 

5.1.5). 

5.1.1 Raw Phase I Data 

The initial dataset, adopted from Phase I, is comprised of the output of 501 SOSS simulations of JFK. In 

each of these runs, the SOSS simulation is operating deterministically (with no pseudo-randomness), and 

with the SSOS CD&R functionality turned on.  The simulations are all for the same six hour schedule of 

flights, where each flight has a fixed 3D path. The simulations differ because the gate pushback times or 

landing times of each flight have been perturbed pseudo-randomly, external to the simulation, according 

to a simple model of gate pushback time uncertainty.  Within the simulation, the individual taxiing flights 
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interact with each other via common points in their 3D routes and the SOSS CD&R mechanism (i.e., they 

are not allowed to crash into one another).  The details of these interactions are sensitive to initial 

conditions, and thus, taxi times vary from one simulation run to the next in a manner that would be 

difficult to predict. 

5.1.1.1 4D Trajectories From SOSS 

The output of the SOSS simulation runs (captured in the ACSchedule files) describes the progress of each 

flight along its 3D path in a link-node (a directed graph) model of the airport.  The file contains the 4D 

trajectory of each flight consisting of the sequence of nodes in its 3D path and the time of arrival to and 

release from each node in its 3D path. Thus, each ACSchedule file describes a set of taxiing flights that 

are all mutually interacting and thereby mutually impeding their progress along the taxiways. 

The 3D route of each departing flight in the Phase I SOSS simulation data for JFK includes four distinct 

nodes the flight passes through: the gate, spot, merge, and runway nodes. The gate node is the first node; 

it is where the departure originates in the simulation.  In the Phase I SOSS simulation data, the runway 

node is the last node; it is the point on the runway from which the aircraft begins its acceleration for take-

off.  In the Phase II SOSS simulation data, the 3D route of each departure includes an additional node 

after the runway, the departure fix node; it is the point where the departure has completed the significant 

portion of its climb towards cruise, and exits the TRACON airspace. 

A spot is a point on the airport surface where a flight passes between the ramp area (controlled by the 

airlines) and the movement area (controlled by the air traffic controllers).  The SOSS adaptation for an 

airport identifies a subset of nodes as spot nodes.  Each departing flight will pass through one of these 

spot nodes. 

All of the departures using a given runway will approach that runway through the same final sequence of 

nodes.  The first of these common nodes is called the merge node, because the trajectories of departing 

aircraft all merge into a single aircraft stream at this point. In the airport configurations that we used, only 

one runway is used for departures at each airport. Thus, in our data, we have a unique merge node at each 

airport.   

5.1.2 Evaluation Framework 

We create an evaluation framework, shown in Figure 19, to enable the testing of BNs or any other 

machine learning models. The evaluation framework also helps to refine parameters.  As shown in Figure 

19, the framework is a pipeline, beginning with raw data from SOSS airport simulations, and ending with 

performance metrics of the particular model under test.  Along the way, the raw data (ACSchedules) is 

processed to extract the departing flights and the relevant features (the “Table of Factors” or TOF), it is 

split into separate training and testing subsets, and it is optionally discretized (or “binned”) if discrete 

random variables are used in the BN. The parameters of the model (e.g., the Bayesian network) are 

derived from the training data, using the appropriate form of machine learning.  That model is then used 

to predict the transit taxi times of the flights in the test data.  Comparison of these predictions with the 

actual transit times in the test data, results in performance metrics results.   

As indicated in the Figure 19, we have kept the data from each spot (i.e., departing flights that passed 

through each spot) separate. This enables us to train and test a separate model for each spot, as was done 

in Phase I. It also allows us to focus on the model and data from just one spot for a more detailed 

examination.  
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Figure 19. JFK Evaluation Framework 

For example, for spot DA015, we show the P-distribution of the runway arrival time in Figure 20. The P-

distribution is generated by comparing the actual marginal distribution generated using TOF data (see 

Figure 24) and the predicted marginal distribution in the trained BN model (see Figure 25). If the P-values 

are higher, then the two distributions are more similar as shown in Figure 20. 

 

Figure 20.  P-Distribution of runway arrival time. The original distribution is shown in Figure 23 and 

predicted distribution is shown in Figure 25. 
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5.1.2.1 Creating Table of Factors 

The factors relevant to the taxi time of a given departing flight include aspects of that flight, as well as 

descriptors of contemporaneous traffic. For example, the gate that a flight leaves from is a property of that 

flight. In contrast, the simultaneous gate releases is a count of the number of flights departing from 

nearby gates in a small window of time surrounding the pushback time of the given flight. The 

simultaneous gate releases count depends on other flights, but taken from the same simulation run.  The 

Table of Factors is a compilation, for each flight, of selected aspects of the flight, as well as of other 

traffic metrics that have been pre-computed using flights from the same simulation run, and at the 

appropriate simulation time. Once we have created the Table of Factors, we can treat each flight as an 

individual data point, without additional reference to the simulation run in which it occurred or to other 

flights. In later sections we will often refer to these factors as features, to be consistent with the machine 

learning literature.  

We began with the factors or features from Phase I.  These include such fixed aspects of the flight as its 

gate and spot (i.e., the nodes in the link-node model corresponding to the gate and the spot, for that 

flight). We refer to this combination of node sequence and times as the trajectory. Our data set from the 

501 SOSS simulations contains 501 instances of each simulated flight. For each flight, its 501 instances 

have the same 3D path (as a sequence of nodes in the SOSS link-node model of the airport), but differ in 

their times at the nodes along that path, thus representing the alternative 4D trajectories of the flight. 

Some features are extracted from the timing along the flight’s 4D trajectory, such as the gate time 

(actPushbackTime), spot time (actSpotArrTime), merge time (actMergeNodeArrTime), and runway time 

(actRwyTime).    

We adapted software from Phase I to extract these features from the data.  Although the process is lengthy 

(about 1 hour of compute time) the result can be cached and reused. Note that the entire data set must be 

processed, even if only a subset is used for some test, because, for discrete random variables, we must 

learn the full range of values that are present in the data in order to set the sizes of corresponding BN 

nodes. 

The structure of the data is illustrated in Table 1. The leftmost column names the extracted fields 

including the call sign, gate, spot and arrival times at various nodes. The call sign is used to identify 

unique flights. In this example, spot VA_001 has 2 unique flights namely UAL23 and UAL53. For every 

ACSchedule txt file processed, representing one simulation run, a column is appended to the 

table_of_factors_data structure for each unique flight for that spot. In this case, for spot VA_001 for the 

two ACSchedule files were processed, four columns are added two for each of the unique flights.  The 

TOF for this spot, for our full data set (for Phase I data) will have 1002 columns; 501 for each of these 

two flights. 
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Table 1. Table of Factors Data Structure for Phase I 

 

The fields that correspond to actSpotArrTime, actMergeNodeArrTime and actRwyRelTime (values of last 

three fields as shown in Table 1) are time values denominated in seconds from the beginning of the 

simulation.  These have not been discretized (or “binned”) in order to allow for experimentation with 

different bin sizes and comparison of actual and predicted time values. Note that for training the BN 

engine and for prediction the random variables (of the same names as the temporal variables in TOF) will 

all be computed relative to the gate pushback time. In particular, in Phase I, and in our current work 

assessing the Phase I Bayesian network, the gate time random variable (actPushbackTime) is always zero.  

5.1.2.2 Splitting Data into Training and Test Sets 

It is a common practice in machine learning experiments to split the data set pseudo-randomly into 

training and testing subsets.  This is done to force the learning model to generalize to new previously seen 

and new instances. This method prevents overfitting; that is, models performing very well in the training 

phase and poorly during test phase.    

For this reason, once the table of factors has been created, it is split into two sets, training and testing, in a 

ratio of 6:4.  The split is carried out freshly for each test or experiment. 

To split the table_of_factors data structure into these two sets, care should be taken to ensure that all 

unique flights are present in both sets. This is ensured by using the flight ids that is stored in the call sign 

field of the table_of_factors. Referring to Table 1, columns 1 and 2 belong to one simulation instance and 

will be extracted together into one of the two sets. Similarly columns 3 and 4 belong to another unique 

simulation and will be extracted into of the two sets. 

This splitting of the table_of_factors is carried out for each spot to create train and test sets and stored in 

train and test directories respectively. 

5.1.2.3 Training BN and Performing Predictions 

Training a BN typically involves two steps: 1) creating a BN structure, and 2) learning the BN 

parameters. The Phase I BN structure is based on the knowledge of one or more subject matter experts. A 

snapshot of a small part of the JFK airport, in the form of a node-link diagram, is shown in the left side of 

Figure 21. Some important junction nodes that are associated with our Phase I random variables are 

indicated in red. The random variables in the model (i.e., the nodes of the BN) include metrics of the 

traffic levels at these important junctions in addition to the flight’s time of arrival at these nodes. The 

flight’s trajectory along these nodes in the airport snapshot is used to create plausible dependencies of the 

random variables in the BN as shown in the right side of Figure 21. For example, it is entirely reasonable 

that traffic at node F010 might affect the transit time of some flights (such as the one indicated in green) 

from gate to merge node.   
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Figure 21.  Phase I BN Structure from SME Consultation.  Left, JFK Airport Snapshot with a Flight’s 

Trajectory Highlighted in Green. Right, Phase I BN Structure. 

As in Phase I, we (initially) learn a distinct BN model for each spot; that is, for departing flights that pass 

through a given spot. These are flights leaving from nearby gates which use the spot, which tend to have 

similar taxi paths to the runway.  To learn the parameters for a particular spot-model, we therefore use the 

training data for all the flights that pass through that spot. We use the junction tree algorithm to create 

inference engines for each spot. The trained inference engine is then used to predict the futures for each 

flight in the test data by selecting the engine for the flight’s scheduled spot.   

In training each per-spot model, the spot random variable will always have the same value, and so, does 

not play an important role.  In later work, we construct unified taxi time models for the whole airport, in 

which the spot random variable becomes significant. 

5.1.2.4 Model Evaluation Metrics 

The predicted and observed arrival times (for spot, merge and runway) are compared based on the 

following two metrics: 

1. Prediction error: Root mean squared error (RMSE) of arrival time predictions with respect to 

actual arrival times. 

2. Similarity between predicted and observed distributions: We use the p-values of Kolmogorov–

Smirnov test (K–S test or KS test) as a measure of similarity. The higher the p-value is, the more 

similar the distributions are.  

P-value is the minimum significance level (𝛼) at which you reject the null hypothesis. The null hypothesis 

of the KS test is that the cumulative distribution function of the two compared samples comes from the 

same distribution. If 𝛼 of the test is higher than the p-value, we reject the null hypothesis. Conversely, if 𝛼 

is lower, we accept the null hypothesis following the test implication. In this case, we conclude that the 

compared samples are similar in distribution.  

During generation of multiple futures, a sample from the inferred distribution is predicted as arrival time. 

Hence computing RMSE by comparing samples to true arrival times does not complete the evaluation. 
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We also need to compare the distributions using a similarity metric. Thus RMSE and p-values together 

form a complete set of evaluation metrics.  

5.1.2.5 Summary Algorithm 

The pseudocode for the evaluation framework is shown in Figure 22. The airport consists of a list of 

flights 𝛱 =  (𝜋1, 𝜋2,…, 𝜋𝑛) and trajectories = ( 𝜙1, 𝜙2, . . ., 𝜙𝑚). Any flight 𝜋𝑖in the airport will traverse 

through one such trajectory 𝜙𝑗. Each trajectory consists of a set of important points in the 3D path, 𝜙𝑗  =

( 𝑛1, 𝑛2, . . . . , 𝑛𝑘 ), denoted as nodes. All departing flights follow three important nodes: spot node, merge 

node and runway node. The list of spot nodes are denoted by 𝛶. The simulation data 𝑋̂ = (𝜫, 𝜱) consists 

of a list of flights and their trajectories. For each flight 𝜋𝑖, the data consist of a node name 𝑛𝑟 and an 

arrival time 𝑡𝑟 of the flight at the 𝑟𝑡ℎnode. In procedure SplitData, we group the flights based on the spot 

and create the Table of Factors as described in Section 5.1.2.1. We split the TOF data 𝑿̂ into train 𝒀̂, and 

test data 𝒁̂ as described in Section 5.1.2.2. The train and test data are based on the spots:  𝑌̂ =
 (𝑌1, 𝑌2,…, 𝑌𝑝) and 𝑍̂  =  (𝑍1, 𝑍2,…, 𝑍𝑝) where 𝑝 is the number of spots. The training data 𝑌𝑎 for a spot 

𝑎 is used to create BN inference engines specific to that spot. The list of inference engines is stored in𝛩 =
 ( 𝜽𝟏, 𝜃2, . . ., 𝜃𝑝). The trained BN engines 𝛩 are used for predicting the arrival times for each flight in a 

spot. The procedure Test retrieves the flight data (𝜋) and trajectory data (𝜌), and uses it as evidence in the 

trained engine (𝜃𝑠𝑝𝑜𝑡) for the corresponding spot. Then, inference is run on the updated BN to predict the 

flight arrival times (PredictSamplingTimes). The predicted results (𝒁̂′) are compared with the actual 

results (𝒁̂) and performance metrics are computed as shown in the Evaluation procedure. 
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Figure 22. Algorithm to Construct Table of Factors and Learn and Evaluate BN Model for Phase I BN Node 

Models. 
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5.1.3 Fixing the Bayes Net Toolbox (BNT) 

During the initial experiments with Phase I approach, we studied the marginal distributions of transit time 

variables (spot, merge and runway arrival times). We observed a disparity between the marginals directly 

estimated from the data and the distributions of the samples generated from trained BN models. After 

many elaborate and thorough investigations we found a bug in the open source Bayes Net Toolbox (BNT) 

for MATLAB used for this work. We fixed the bug and the resulting toolbox produced correct results; 

that is, the predicted distributions matched the data distributions.  

In the following subsection, we provide a brief description of the bug. We then compare the marginal 

distributions of some random variables in the table of factors data and trained BN model, in both original 

BNT and bug fixed BNT. We show that the marginal distribution generated by the bug fixed BNT 

matches the table of factors data while the marginal distribution generated by the original BNT shows a 

random behavior. 

5.1.3.1 Summary of the BNT Bug 

The following functions are buggy in the open source BNT toolbox found from 

https://github.com/bayesnet/bnt (available from Jan 2014).  

 https://github.com/bayesnet/bnt/blob/master/KPMtools/find_equiv_posns.m 

o function p = find_equiv_posns(vsmall, vlarge) 

o The function assumes sorted order of vsmall and vlarge. In certain cases (NOT 

ALWAYS) this assumption is violated.  

 https://github.com/bayesnet/bnt/blob/master/BNT/potentials/Tables/extend_domain_table.m 

o function B = extend_domain_table(A, smalldom, smallsz, bigdom, bigsz) 

o This function uses find_equiv_posns and thus suffers from similar issue: unsorted 

smalldom and smalldom. 

5.1.3.2 Approach to Identifying the Bug 

In order to highlight the behavior of the original and bug-fixed BNT, we compare the marginal 

distributions generated by the random variables like spotArrivalTime, mergeNodeArrivalTime and 

runwayArrivalTime. We generate the actual marginal distributions using the table of factors data. This is 

the true distribution. We assume that after parameter learning, the random variables in the trained BN 

model should also have a similar distribution.  

5.1.3.3 Comparison Results for the Bug-fix 

In Figure 23, we show the true marginal distribution of spotArrivalTime, mergeNodeArrivalTime and 

runwayArrivalTime variables generated from the table of factors data. We then generate the marginal 

distribution of the same variables from the trained BN model using the original BNT (shown in Figure 

24) and the bug-fixed BNT (shown in Figure 25). Figure 24 did not match the true distribution. Figure 25, 

which shows the marginal distribution from the bug-fixed BNT, matches the true distribution and the P-

distribution for runway arrival times (actRwyArrTime) as shown in Figure 20. 

https://github.com/bayesnet/bnt
https://github.com/bayesnet/bnt/blob/master/KPMtools/find_equiv_posns.m
https://github.com/bayesnet/bnt/blob/master/BNT/potentials/Tables/extend_domain_table.m
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Figure 23.  Histograms from Table of Factors Data 

 

Figure 24.  Marginal Distributions from Trained BN Models using the Original BNT 

 

Figure 25.  Marginal Distributions from Trained BN Models using the Fixed BNT 

The right-most plot in Figure 23 shows some gaps in the histogram of runway arrival times from the data. 

This is an effect of the implementation of the histogram function in MATLAB for continuous data. We 

divided the times by 30 to match the distributions from the BN models (which come from discretized 

data). The histogram of resulting samples lead to some small empty bins appearing as gaps in Figure 23. 

5.1.4 Sampling the Trained Bayesian Network Model to Generate Futures 

A future is the collection of predicted 4D trajectories of multiple flights that is a plausible extension of the 

current state of the airport (at a scheduling cycle) into the future. A future contains the complete predicted 

4D trajectory for each active or pending flight within the time horizon for traffic planning, beginning at 

the current time instant (e.g., SOSS simulation time step). PROCAST predicts the 4D trajectory of a 

departure flight by sampling the trained BN models of taxi time. The future is input to the PROCAST 

multi-airport traffic scheduling algorithm, which alters the 4D trajectories of the flights as needed by 

specifying the arrival fix crossing times, departure pushback times, and associated runway times of the 
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flights to comply with the capacity constraints of the runways and fixes. The output of the PROCAST 

scheduling algorithm is a planned 4D trajectory for each flight comprising the future. Different futures 

will have different predicted 4D trajectories for the same flights comprising the future, due to the random 

variations in the taxi times captured in the trained BN models. The PROCAST scheduling solution (i.e., 

the planned 4D trajectories) will also be different for different futures comprising the same set of flights. 

The remainder of this section discusses the particular 4D trajectory times that are sampled for departures 

for the current PROCAST implementation, and alternative methods for sampling the BN models to 

predict the 4D trajectories of flights comprising the future.  

5.1.4.1 Trajectory Times for Prediction 

A future contains the complete predicted 4D trajectory for each departing flight that is currently pending, 

at the gate, or taxiing at the current instant in time (e.g., SOSS simulation time step). The 4D trajectory 

for each departure flight comprises its 3D path from gate to departure fix and times at the points along the 

path (e.g., gate, spot, runway, fix). Depending on the current state of the flight (pending, at the gate, or 

taxiing), some or all of the times at the gate, spot, runway and fix will be predicted using the BN model. 

The current implementation of arrival-departure scheduling in PROCAST for this project, only the ETA 

of the departure to its takeoff runway (runway time in the following discussion), and the gate pushback 

time (readiness time in the following discussion) are required for scheduling. 

For departures that are pending, or at the gate, the readiness time is a time, in the future, when the aircraft 

will be ready to depart from the gate. The readiness time of each departure is given as input data to the 

SOSS simulation. The runway time can be computed as the sum of the readiness time and the predicted 

gate-to-runway taxi time. For taxiing departures, the runway time is the predicted time of arrival at the 

runway, given the actual gate pushback time, and the progress reflected in the current state.  

PROCAST scheduling relies on predictions of the gate-to-runway taxi times of both taxiing and non-

taxiing departure flights in order to schedule the runway times, and, for departures at the gate and 

pending, the gate pushback times. For PROCAST, we first predict the distributions of these transit times, 

then sample the distributions repeatedly, to construct multiple futures based on the current airport state. 

The 4D trajectory of each departure contains five transit time variables, actPushbackTime, 

actSpotArrTime, actSpotRelTime, actRwyRelTime, and actMergeNodeArrTime and the associated the 

states of all variables in the Phase I BN (Figure 21). Depending on the current location of the aircraft, one 

or more transit time fields in its 4D trajectory may not yet have a value, or all transit time fields may have 

values. Departures which are ready to pushback at the gate or taxiing on the airport surface towards the 

runway will have some values missing, thus require runway arrival time predictions. Departures which 

have already departed from the runway and are approaching departure fixes will have all the fields filled 

in for their trajectory.  

We use the perturb_trajectory method to fill in one or more missing fields among the five transit time 

variables for departures. We predict these variables using a trained BN model (as shown in Figure 21). 

Since the BN models the transit times between the gate, spot, merge, and runway, the value of 

actPushbackTime is added to the predicted duration from BN to estimate actual arrival times at the spot, 

merge, or runway.  

Generating futures is a two-step approach. First, we supply all non-transit time variables to the trained BN 

model as evidences and use the junction tree inference algorithm [KD09] to get the posterior distribution 

of an enquired transit time variable. Then we generate a sample from this distribution to obtain a transit 

time value and include it with the appropriate node in the 3D path to generate the 4D trajectory.  

Sampling is done in two different ways: stage-wise sampling and posterior sampling. Each is described 

next. 
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5.1.4.2 Stage-wise Sampling 

In this scheme, inference and sampling are repeated sequentially to predict all three transit-time variables. 

First, the spot node arrival time is sampled from the distribution. Next, the sampled value of spot arrival 

time is provided as evidence to infer the merge node arrival time. Finally, the same process is repeated to 

sample the runway node arrival time, using the sampled arrival times for the spot and merge nodes as 

evidences. To sample the three variables (spot, merge and runway), three different inference engines are 

created.  

5.1.4.3 Posterior Sampling 

In this scheme, we create one junction tree inference engine using only non-transit time variables as 

evidences. We sample the posterior distributions of spot, merge and runway arrival times independently 

to fill in the missing fields in the trajectory. As some parents of runway (spot and merge) can be absent 

from the evidence set, the inference algorithm marginalizes over all the missing parents to estimate the 

posterior distribution.  

5.1.4.4 Comparison 

The posterior sampling method is much faster than the stage-wise method because constructing a junction 

tree inference engine is computationally intensive. Perturbing a trajectory requires predicting values for 

one or more (1, 2 or 3) transit time variables (actSpotArrTime, actMergeNodeArrTime, actRwyRelTime). 

If all three variables need to be predicted, the stage-wise sampling method requires constructing two extra 

junction tree inference engines. An empirical comparison of these two methods is presented later (Figure 

28 and Figure 29).  

5.1.5 Addressing Prediction Conditions Having Zero Probability Values 

When we encounter conditions for prediction not captured in the training data, the trained BN model will 

represent this condition as having zero probability, thus may not be able to make a prediction for that 

condition. During prediction from a trained BN model, if a new combination of evidence variables is 

provided, the inference algorithm may output zero distribution (zero probabilities for all states) if care is 

not taken. This is a fundamental problem, especially with discrete data, as in our case. We attempt to 

alleviate this problem by a few approaches, as discussed below, including supplying a default value, using 

a prior distribution, increasing the bin size for discretization, and using fewer evidence variables for 

prediction.  

5.1.5.1 Supply a Default Value (Phase I Approach) 

In the Phase I approach, whenever zero probabilities were encountered during prediction, a default 

(predefined) value was output. The default value was tuned experimentally. For a fixed time bin size and 

Phase I dataset, this approach performed reasonably well. However, later experiments show the drawback 

of this method.  

5.1.5.2 Bayesian Network with a Prior Distribution 

The BNT provides an option to specify the Dirichlet prior with different weights. We experimented with 

different weights between 0.05 and 2 for JFK spot node VA_001. The results are shown in Figure 26.  

The baseline RMSE with no prior for stage-wise and posterior sampling is shown as a straight line for 

comparison. In the “no prior” method, we use a fixed value based on the domain knowledge. The 

sampling was done using both the stage-wise and posterior methods. During prediction, as expected, we 

found that there were no zero Probability Mass Functions (PMFs). It can be seen that for varying weights, 

the errors show a random behavior for spot, merge and runway. The weight value of 0.7 showed the 

lowest RMSE, 68.7, using stage wise sampling for runway which is lower than the baseline RMSE, 

88.62, using stage-wise sampling and 72.63 using posterior sampling when no prior was used.  
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It might be that the BN with Dirichlet prior would give better predictions if it was trained with a bigger 

data set. Figure 26 shows the effect of varying training sample sizes for runway when the Dirichlet weight 

is 0.7. We can see that the RMSE increases for smaller sample sizes. The RMSE becomes equal to the 

RMSE of the “no prior” method as we increase the training sample size. This behavior can be seen in both 

stage-wise and posterior sampling methods.  

In conclusion, we found that the transit time prediction results using a prior are not encouraging; not 

convincingly better than the baseline with no prior. 

 

Figure 26. RMSE for Varying Dirichlet weights. The Straight Line is the RMSE When No Prior Is Used. 

 

Figure 27. RMSE Versus Sample Size With Dirichlet Weight of 0.7. RMSE of Dirichlet Prior Method is Large 

For Smaller Sample Sizes, Decreases To “No Prior” Method With Increasing Sample Size. 

5.1.5.3 Larger Bin Size to Address Sparseness of Training Data 

The bin size for discretizing the transit times determines the number of states of the associated random 

variables in the BN. Smaller bin size, despite creating lower discretization error, increases the number of 

states of the random variables. This increases the sizes of the CPTs. Hence for a fixed amount of training 

data, smaller bin sizes will result in sparser CPTs. During prediction, sparse CPTs will produce posterior 

probability distributions that are zero. 

We compared the effect of different bin sizes from 10 to 50 seconds in terms of prediction error.  Table 2 

shows the RMSE of three transit time variables’ prediction for different time bin sizes. We present the 

results for both sampling methods.  
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Table 2. Root Mean Squared Error of Three Transit Time Variables’ Prediction for Different Time Bin Sizes 

 RMSE of Stage-wise sampling RMSE of Posterior-based sampling 

Time bin 

size (sec)   

spot merge runway spot merge runway 

10.0 9.01 23.94 99.52 10.83 19.55 83.96 

20.0 14.47 19.15 79.13 15.19 19.21 73.79 

30.0 20.71 23.05 71.88 20.49 23.67 67.74 

40.0 29.01 32.54 65.27 28.60 32.37 65.34 

50.0 37.16 41.64 72.41 36.32 39.67 70.34 

Figure 28 presents the RMSE of predicted runway transit times as a function of time bin size. The results 

indicate that the RMSE of predicted runway transit times using a stage-wise sampling method varies 

significantly with time bin size. In contrast, the posterior method shows smaller variations. For both 

sampling methods, the trend with increasing time bin sizes is that the prediction error decreases, with the 

minimum error obtained using time bins of 40 seconds. Beyond that, larger time bins yield increased 

errors. Between the two methods, the posterior-based method performs better than the stage-wise method.  

 

Figure 28. Effect of Time Bin Sizes on Prediction Performance 
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It is bit unclear why 30 to 40 second time bin sizes were well-performing. However, the trend seen here is 

consistent with the hypothesis that zero posterior probability distributions (and the naive correction to 

them) are a major source of prediction error in the Phase I model, with discretization error becoming a 

significant factor only at the largest time bin sizes. In the Phase I approach, the pre-defined prediction 

values for zero probability instances were tuned for 30 second time bin size. Thus, for smaller or larger 

bins, prediction error increases. 

5.1.5.4 Prediction Using Less Evidence (Fewer Inputs)  

To eliminate the problem of zero probability instances during inference from the trained BN engine, we 

implemented a scheme to methodically reduce the evidences such that we get non-zero probabilities from 

the inference engine. Recall that zero probabilities arise when the combination of values supplied as 

evidence do not occur in the training data. If we ignore some of those variables, then we are more likely 

to have at least some training data that matches the remaining ones. Thus, with fewer evidence variables, 

it is more likely to get a non-zero posterior probability distribution during inference.  

We sort all the evidence variables in decreasing order of the number of states. We start the inference 

process with all evidence and estimate the posterior distribution for the enquired variables (spot, merge 

and runway). If a zero distribution is returned, we incrementally reduce the evidences in the 

aforementioned order until a non-zero distribution is returned.   

We compared this scheme with the default value approach for the posterior sampling case (since this 

method performed better in previous experiments, see Figure 28). We used simulation data of flights 

through one spot. Figure 29 shows the comparison results with different time bin sizes.  

 

Figure 29. Comparison of Phase I Approach and Our Scheme of Reducing Evidences for Solving Zero 

Probabilities Problem (with Posterior Sampling) 

We observe that the prediction error remains low with this scheme for a wide range of time bin sizes. 

Moreover, best prediction performance is achieved with a time bin size of 5 seconds. With decreasing bin 

sizes, the discretization error decreases. And with bins smaller than 5 second, data becomes too sparse to 

populate the conditional probability tables of the BN. Thus RMSE increases for the 1 second time bin 

size. 

Overall, the scheme with reducing evidences shows superiority to the method of using default values in 

most cases. The minimum RMSE is about 60 seconds (for 5 second time bins). Therefore we adopt this 

method for all later experiments with discrete data.  
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5.1.6 Using Continuous Variables in the Bayesian Network 

Representing transit time variables as continuous random variables improves modelling accuracy, and 

continuous variable models cannot produce posterior distributions that are zero. However, using the 

available packages (BNT and bnlearn), a switch to continuous variables adds complexity to PROCAST in 

the training of BN models and interfacing with the arrival-departure scheduler. 

We investigate the continuous representation of transit times in the BN. The BNT toolbox implements the 

training and inference for continuous variables by separate methods from discrete variables. These 

methods are likely to be affected by a bug similar to the one described in Section 5.1.3. Hence we avoid 

BNT for this experiment and use the R bnlearn (Scutari 2010 [MS10]) package instead.  

The BN structure remains the same as in Figure 21b. We learn the model parameters using the bn.fit 

method and predict the runway arrival times using the predict method. This method needs the values of 

all parent nodes to predict any BN node. Therefore we first make predictions for spot node, then merge 

node and finally runway node which can have both spot and merge nodes as its parents. If a flight has 

passed a spot and/or merge node, its arrival time to the spot and/or merge node are known. In this case we 

use the actual arrival times of spot or merge nodes to predict runway arrival time.  

Using the same training and test sets (which are generated from Phase I dataset for one spot) as in the 

previous experiment (Figure 30), the prediction errors are a Mean Absolute Error (MAE) of 44.5 seconds 

and RMSE of 34.7 seconds. The results are much improved compared to the previous experiment using 

discrete data. Can using continuous random variables make such a big difference in prediction? We 

investigate this question next.  

Apart from using continuous versus discrete variables, there are two major differences in the last two 

experiments: MATLAB BNT package versus R bnlearn package, and sample versus predict. To compare 

the two BN packages, one would need to fix the possible bugs with continuous variables in BNT. Due to 

the limited scope of this project, we leave that as future work.  

However, we compare the sampling and predicting schemes in BNT with discrete variables. In the 

sampling case, the prediction is a sampled value from the posterior distribution and in the predicting case 

the posterior mean is the predicted value. The following example comparison illustrates the effect of 

sampling versus predicting: 

Sample: RMSE (spot, merge, runway) = 20.584028, 23.754675, 63.131729 

Predict: RMSE (spot, merge, runway) = 17.642107, 18.811627, 47.712309 

We observe a significant drop in prediction error for runway arrival in the predicting case. Since the 

objective of model training is minimizing a squared error based cost function, it is expected that the 

predicting scheme would provide more accurate predictions. The main purpose of sampling is to generate 

multiple futures as described in Section 5.1.4.  

The previous experiment demonstrates the additional error introduced by sampling. We need to do a fair 

comparison between continuous and discrete datasets. We trained two models using continuous and 

discrete data and evaluated them under the predicting scheme. Figure 30 and Figure 31 show the mean 

and standard deviations of the prediction errors for the predicting scheme with continuous (bnlearn) and 

discrete (BNT) cases respectively.  
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Figure 30. Prediction Errors Using Continuous Random Variables and R bnlearn Package (Spot = DA-015). 

Error Bars Represent the Variation over Multiple Simulations for this Spot.  

 

Figure 31. Errors in Predictions using Discrete Random Variables and Posterior Mean Method with 

MATLAB BNT (Spot = DA-015). Error Bars Represent the Variation over Multiple Simulations for this 

Spot.  

The mean predictions in Figure 30c are around zero. This is not the case in Figure 31c where a bias in 

prediction is seen. Since we observe superior performance using continuous variables and bnlearn 

package, we use this method for predictions using Phase II data. 

5.2 Generalized Bayesian Network Taxi Time Models for Arbitrary Airports 

This section presents our Phase II methods and results of creating a generalized approach to Bayesian 

network modeling of taxi times for an arbitrary airport and applying the method to the JFK, EWR and 

LGA airports in the New York metroplex. Our work addresses a number of critical challenges and makes 

a number of fundamental contributions, including generalization to arbitrary airports, feature engineering, 

handling large and sparse data, and creating and using a complex BN model, summarized below: 

 Generalization to arbitrary airports: The Phase I BN is specifically designed for the JFK 

airport. In Phase I design, subject matter experts played a key role in determining the nodes for 

the BN. It is done by picking the “important junctions” that contribute to the flight delay. Our 

main goal in Phase 2 is to generalize the BN to support any new airport. In order to do this, we 

did not want to rely on the subject matter expert’s choice of nodes. So we follow a data driven 

approach to choose the “important junctions” in the airport that contribute to the traffic.  

 Feature engineering: We had to devise a new approach to collect the traffic count (the number 

of flights passing through a route segment during a time period). Then, we pick the segments with 
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more number of flights as heavy traffic route segments. These chosen segments are used as the 

“important junctions” that contribute to the delay.  

 Large and sparse data: Due to the above feature engineering, we end up with large number of 

features. Some of the features may not have traffic counts for that training data. This can cause 

the conditional probability tables to be large and sparse. 

 Complex BN model: Instead of relying on subject matter experts on creating the BN structure, 

we use the structure learning algorithms to create BN structures from the given set of features. 

The resulting BN model can be complex where a node can have any number of parents and 

children making it difficult to comprehend the BN. 

The multiple-airport approach presented in this section is general and works for any airport. By using a 

data-driven machine learning approach, we have developed a general transit time method that relies on 

Bayesian network structure learning. The method is experimentally demonstrated using data from three 

airports – JFK, EWR, and LGA. For JFK, we compare the Bayesian network structure learning method 

with the Bayesian network parameter estimation method used in Phase I. Experimentally, we find 

improved precision and accuracy when using structure-learned Bayesian network models.  

This section begins with a description of the training data sets for Phase II (Section 5.2.1).  We then 

present extension of the BN modeling and prediction framework to arbitrary airports, first by 

summarizing the features of the Phase I BN models (Section 5.2.2), then generalizing these features 

(Section 5.2.3). We present enhancements to the evaluation framework for creating and evaluating the the 

BN models (Section 5.2.4). We present learning the BN model structure from data (Section 5.2.5) and 

using the models for prediction (Section 5.2.6). We present experiments evaluating the prediction 

accuracy and sensitivity of the Phase II models (Section 5.2.7). We discuss the implementation of the 

models in PROCAST (Section 5.2.8). 

5.2.1 Raw Phase II Data 

In Phase II, new airport simulation data was generated using the enhanced SOSS. Although the simulation 

files had similar information to the Phase I simulation files, there were a few major differences. First, 

separate simulations were performed using traffic scenarios based on three actual days in 2012: May 13, 

June 11 and September 5.  

Before each run of the simulation, the traffic scenario for that day is perturbed by adding a distinct 

Gaussian random value to the original start time for each flight: the gate pushback time for departures or 

the arrival fix crossing time for arrivals.  A separate Gaussian distribution is used for each of the three 

airports, for each of the three months, and for arrivals and departures, yielding 18 distinct distributions.  

The standard deviations of the distributions are derived from Out-Off-On-In (OOOI) data sets from the 

FAA, for each of these airports, for each of these months, but from the year 2009.  For example, we 

extracted from the OOOI data for all departures from EWR in May 2009, and computed the standard 

deviation of the delays from the data.  That standard deviation is then used to perturb departure start times 

in the EWR May scenario. 

Processing all the simulation files from the Phase II simulations of the New York metroplex was more of 

a computational challenge than in Phase I because the amount of simulation data was much higher: 

 Each Phase II simulation is 24 hours long, while a Phase I simulation is 6 hours long 

 1000 simulation runs were conducted for each combination of day and airport, for a total of more 

than 9000 simulation output files.  In contrast there are only 501 SOSS output files in Phase I. 

 The formatting of Phase I and II simulations are slightly different. Every flight’s trajectory had a 

few airborne nodes added. Hence, we had to pre-process the files accordingly to comply with the 

existing Phase I parser scripts.  
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Lastly, the simulations from the different traffic days have different sets of flights. These sets are not 

necessarily mutually-exclusive. Traffic conditions in the airport in different dates can be very dissimilar, 

and using one day as training and another for test data can result in poor prediction. Therefore, care must 

be taken in developing and evaluating the BN models of taxi time with this data. 

5.2.2 Features of the Phase I JFK Model 

Features are the random variables pertaining to a given departing flight. These features are the BN model 

nodes that appear in a Bayesian network. Figure 32 presents the features, categorized as temporal and 

non-temporal, for the BN models of JFK taxi times developed in Phase I. 

 

Figure 32. Bayesian Network Nodes and Structure for JFK Developed in Phase I.  Red-colored Nodes are the 

Temporal Features and Black are Non-temporal Features. 

Some of the Phase I features were specific to the JFK airport and its node-link model developed for SOSS 

(e.g. ActFlowRate_B034). Designing a set of such features requires a subject matter expert’s advice, as 

well as trial-and-error. It is desirable to minimize dependency on such hand-crafted features, so that we 

can easily extend the model to other airports. So, in Phase II, we analyze these hand-crafted features and 

replace them with generalized features so that we can easily extend the models to other airports.  

Features generated for JFK during Phase I can be seen in the BN structure shown in Figure 32. The 

features are grouped and briefly explained below. 

5.2.2.1 Gate and Spot Features 

Random variable Gate indicates the gate from which the given aircraft departed. The random variable 

Spot indicates the spot node in the aircraft’s 3D path. 
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5.2.2.2 Temporal Features 

Temporal features are the random variables that capture the aircraft’s transit times. These transit time 

variables are calculated relative to pushback time of the aircraft (the ActPushbackTime feature in the BN 

model). These are:  

 ActSpotarrivalTime and ActSpotReleaseTime, which measure the time taken to arrive at, as well 

as depart from the spot node, from the moment of pushback from the gate;  

 ActMergeNodearrivalTime, which is the transit time between merge node arrival and pushback 

time; and finally, 

 ActRunwayReleaseTime, which is a transit time between the pushback and the departure from the 

runway node.  Essentially, these capture the timeline of an aircraft’s trajectory. 

5.2.2.3 Ramp Area Traffic Features  

This group comprises three random variables which measure the traffic near the departure gate and the 

adjacent ramp area: 

 ActConcurrentGateReleases, which is a count of the flights released from the same gate area in a 

small time-window surrounding the gate release time, and, 

 ActConcurrentSpotInflux, which counts number of arrival flights crossing the spot into the same 

gate-ramp area in a time window surrounding gate release time. 

The above two features capture factors influencing the aircraft’s spot arrival time, once it has pushed back 

from the gate.  

A third variable, ActSpotPassagesInDepDir, measures the number of aircraft passing in the taxiway, 

adjacent to a particular spot (e.g., node DA_015 in the node-link model of JFK for SOSS). When a 

departure exits this spot and reaches the taxiway, it will turn, always in the same direction. The traffic 

count for this variable is restricted to flights travelling along the taxiway (but not exiting the spot) in the 

direction that a departure from the spot would turn.   

5.2.2.4 Queue Traffic Features 

Once the aircraft cross the merge node, they form queues at nodes prior to the runway node before they 

are allowed to depart from the runway. The queue traffic feature measures the traffic conditions in this 

segment between merge node and the runway node. One such queue traffic feature is the random variable 

ActDepQueueSizeAtMergeNodeArrTime, which counts the number of flights that have crossed the merge 

node earlier than the given aircraft but not yet taken off from the runway at the time window surrounding 

the merge node arrival. The number of flights in the departure queue affects the runway departure time of 

the aircraft currently at the merge node and that is what is being captured by this feature. 

5.2.2.5 Taxiway Flow Rate Features 

The taxiway flow rate features ActFloRateG003, ActFloRateF010 and ActFloRateB034 capture the traffic 

across certain segments in the taxiway between the spot node and merge node in the SOSS node-link 

model of JFK, in the time window surrounding spot node arrival time. The traffic across segments in 

taxiway affects the flight’s merge node arrival time, since these segments lie in between spot node and 

merge node. Specifically, these measure the traffic across segments formed by the intermediate nodes, 

namely, G003, F010 and B034. These intermediate nodes were selected by subject matter experts familiar 

with the JFK airport.  

5.2.3 Generating a Generalized Set of Features 

To extend the model to other airports, we seek to replace these hand-crafted taxiway flow rate features 

with generalized features that do not depend on the inputs of subject matter experts. So, we analyzed 
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these taxi flow rate features to understand their contribution to the BN models of transit time and to 

explore what they can be replaced with. In essence, these features measure the traffic at some point on the 

taxiway, in some window of time (relative to the given flight’s timeline). For example, the features 

ActFloRateG003 and ActFloRateF010 capture the traffic across certain three-node segments containing 

intermediate nodes G003 and F010 during the time window of spot arrival for the given flight. Also, we 

observed that these nodes stand out as having a large amount of total traffic.  

We leverage this idea to replace these hand-crafted features with a set of generalized features that 

measure traffic across high-traffic taxiway links in the airport link-node model for SOSS. From the 

simulation data, we compute traffic (arrivals and departures) across all the node-pairs (links) in the SOSS 

airport link-node model.  Figure 33 shows the traffic distribution across the links. Negative link ids 

represent the traffic in the opposite direction for the same link-id. 

 

Figure 33. Traffic Across Links for JFK - Phase II. 

We see per-link total traffic levels differing by more than two orders of magnitude. We consider links 

with traffic above a certain threshold for the feature generation, and call those links high-traffic links. We 

develop the following procedure to create a set of features based on traffic across high-traffic links: 

 We compute traffic statistics for each link in the airport link-node model. Links are directional, so 

each airport link results in two features. Experimental results showed that top 50 links provided 

good prediction performance, so we pick 50 of the links with the highest traffic counts as high-

traffic links. In addition, if structure learning is used to determine the structure among the 

variables in the BN model, using more features makes BN structure learning much slower due to 

linearly increasing computational complexity with increasing number of BN variables [DR11]. 
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 We consider key moments in a flight’s timeline, e.g., gate release time, spot arrival time and 

merge node arrival time, and we use a time window surrounding these key moments to compute 

traffic across all high-traffic links in the airport. 

 Traffic across each of the high-traffic links is calculated, specifically in the time windows of spot 

node arrival and merge node arrival. So we end up with 100 features: 50 features for spot node 

arrival and 50 features for merge node arrival time window. 

The set of these traffic features captures behavior similar to the hand-crafted features, specifically, 

ActFloRateG003, ActFloRateF010 and ActFloRateB034, as well as the similar 

ActSpotPassagesInDepDir.  So we replace the features by these newly computed 100 features.  However, 

the factors that influence the spot arrival from gate release are the traffic in the same gate area and the 

traffic influx into the same gate area through the spot. This is effectively captured through 

ActConcurrentGateReleases and ActConcurrentSpotInflux.  So we retain these features. 

Table 3 shows the table of factors data structure for this Phase II model. Compared to the TOF data 

structure for the Phase I model listed in Table 1, two new fields are introduced: Traffic_spot_arrival and 

Traffic_merge_arrival. These fields contain the map structure where the keys are the link-ids and values 

are the traffic count across that particular link during the corresponding time window. 

Table 3. Table of Factors Data Structure – Phase II.  

 

Figure 32 shows the Phase II BN with hand-crafted features.  Figure 34 highlights the BN model nodes 

that are being replaced or removed from the Phase II BN and Figure 35 shows the new BN for Phase II 

which is a combination of the old features and the new generalized set of features. 
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Figure 34. Features of Phase I BN Model to be Replaced or Removed in Phase II BN Model are shown in 

Grey. 

 

Figure 35. Features added in Phase II. Highlighted in Pale Blue are the Generalized Features Replacing the 

Hand-crafted Features of Phase I. 
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The result is a generic BN model structure which can be applied to modeling any arbitrary airport. This 

generic model structure can in turn be applied to generating BN models of taxi times for LGA and EWR 

airports in the New York metroplex.  

5.2.4 Enhancing the Evaluation Framework 

For Phase II of the project, we want to create three different BN models of the taxi times, one for each 

airport (JFK, EWR and LGA). We accomplish this by enhancing the evaluation framework for BN 

modeling that we developed for the Phase I BN models for JFK, as depicted in Figure 36. 

The two main challenges in generating the models and processing Phase II data are 1) the applicability of 

the process to all three airports and, 2) processing SOSS simulation output files generated by simulating 

different traffic days, and multiple simulations for each traffic day, for each of the three airports. For each 

airport, the SOSS simulation data have different sets of flights among the three different traffic days in 

May, June, and September of 2012. For compact representation, we suppress the dates in Figure 36.  

We solve the first challenge by inserting BN structure learning in the model training step. Without a pre-

defined structure, this framework can generalize to any airport’s data. Learning the parameters of the 

conditional probability tables remains as the next step of structure learning.  

We address the second challenge by grouping SOSS simulations from multiple days. Equal numbers of 

simulation results for each traffic day are grouped for every airport. Different airports’ data are processed 

separately to train three different models, one for each airport. The grouped SOSS simulation data are 

converted to a table of factors which involves feature extraction as mentioned in Section 5.2.3. These 

features consist of traffic along all links in a given airport. Learning a BN model from such a high number 

of variables is very computationally intensive. Hence we perform feature selection before structure 

learning.  

Figure 36 shows all the processing steps of the enhanced evaluation framework: grouping SOSS 

simulations, extracting features, selecting important features, creating train and test sets, leaning BN 

models, predicting for test set, and evaluating performance metrics. 

 

Figure 36. Processing Steps in the Enhanced Evaluation Framework to Model Aircraft Taxi-times for an 

Arbitrary Airport. 

To identify the high traffic links for a given airport, we aggregate the simulation data, 1 file from each 

traffic day (see Figure 36; bottom of second column). This aggregated data contain all flights for the 
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given airport. We compute the total traffic in all links at the airport from the trajectories of all the flights 

in this aggregated data. We pick 50 of the links with the highest total traffic count as the high traffic links.  

To enable training one BN model for one airport instead of one BN model for each spot (as in Phase I), 

we added an option to create table of factors with flights associated with all spots. This feature is also 

useful for making predictions for flights from different airports at the same time.  

5.2.5 Learning Bayesian Network Model 

Since we are using a generalized set of features to learn a BN model, the edge relations between variables 

are unknown. It is difficult to manually define edges between all BN variables as was done in Phase I 

because we identified 112 features from the Phase II training data. Hence we need to learn the structure 

and the parameters of the BN from the training data.  

Several algorithms exist in the literature to learn BN structure from data [RN03]. Many of the algorithms 

rely on learning conditional independence relations between variables in the data. A commonly used 

approach is the Max-Min Hill-Climbing (MMHC) algorithm which is a hybrid of constraint-based and 

score-based structure learning techniques [TI06]. Although some improvements and extensions of this 

algorithm have been developed, reliable software implementing such methods is not available. Hence, we 

use the MMHC algorithm in our experiments.  

The three transit-time variables (spot, merge and runway) have a temporal order. We provide this 

knowledge to the structure learning algorithm by using a set of blacklisted edges. The complete set can be 

summarized as follows: 

 Runway must be a leaf node 

 Merge can be parent of only runway (and not spot) 

We use the bnlearn implementation of MMHC algorithm in our experiments. After the structure is learnt 

from data, we use the bn.fit method to learn the parameters of the conditional probability tables of all the 

variables. All the variables are modelled as the sum of Gaussian distributions.  

5.2.6 Providing Mean and Standard Deviation for Predictions (bnlearn) 

In order to generate multiple futures, we need to extract the probability distribution of the runway transit 

time variable. The variables are modeled as Gaussians, so we need the means and standard deviations of 

the posterior distributions. The bnlearn package provides the mean as the predicted value. However, to 

predict the runway arrival time of a departure, the method requires all parents of the runway variable to 

be present in the evidence set. At the time of prediction, if the aircraft has not yet arrived at the merge 

node, the values of spot and merge arrival time may not be known. We used a value of 0 for these cases. 

This does not affect the prediction, which is an inner product between the parents’ values and coefficients 

for a linear Gaussian model. 

During revisions of this method, we found a flaw in it. Setting absent parents to 0 does not yield the 

correct result. We need to fill in the missing values by applying stage-wise predictions. The times 

predicted for a departure to the spot and merge points in its 3D path should be used as evidences to 

predict the time of the departure to its runway.  This approach, in effect, marginalizes the missing parents 

of runway arrival time and therefore provides an accurate prediction.  

On the contrary, the standard deviations are not readily available from bnlearn package. We attempt to 

estimate them in two different approaches, CPDIST and an analytical method, described below.  

5.2.6.1  CPDIST 

Given a set of evidences, the cpdist method generates samples of an inquired variable using its 

conditional probabilities. From the samples we estimate the standard deviation of its posterior 

distribution.  
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However, this method requires significant computational time. As we need to make multiple predictions 

during scheduling, calling this method multiple times causes delay in the processing steps. Moreover, 

with evidences for many variables, this method often returns no sample. Hence we need to reduce the 

evidence set to obtain samples of an inquired variable.  

Due to the above mentioned problems, we attempt to find an analytical form of the resulting conditional 

probability distribution of the runway variable. 

5.2.6.2 Analytical Method 

The variance of a sum of independent Gaussian variables is equal to the sum of the individual variances 

[KD09]. For flights in the scheduling process, the unobserved variables (4D trajectory times to be 

predicted) can be those at the spot, the merge point, or none (i.e., the departure has passed the spot and 

merge point, so the times are known). Given the evidences, the variance of the runway node will be the 

sum of its own variance and the variances of the other unobserved nodes in the BN. Using this fact we 

estimate the standard deviations of gate to runway arrival times.  

This approach is very fast as it requires only one dot product computation (between an indicator vector of 

unobserved variables and vector of variances). Moreover, unlike CPDIST, we always can use the full set 

of evidences. 

5.2.7 Experiments and Results 

This section presents the experiments and results with the generalized taxi time modelling approach. In all 

experiments, we use the Phase II data which includes the SOSS simulation data from three traffic days. 

We start with comparing the Phase I and Phase II models. Then we investigate the effect of increasing 

training samples on the Phase II model performance. Near the end of this section, we present the 

prediction performance on all airports.  

5.2.7.1 Comparison to Phase I Prediction Accuracy 

Here we compare the Phase I and Phase II methods using the Phase II data from JFK airport. Since 

creating a TOF from all the SOSS simulation data requires much more computational time, we used data 

from 100 simulations (100 files) for each traffic day, resulting in a dataset capturing data from 300 

different simulations (100 simulations for each airport). The TOF entries created from all these 

simulations are split into training and test sets using a 60:40 ratio.  

Figure 37 shows the learned structure of MMHC algorithm with a few important nodes and edges 

enlarged. The network has 112 nodes and 1693 edges.  
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Figure 37. BN Structure For High Traffic Nodes Learned from JFK Simulation Data Using the MMHC 

Algorithm 

Figure 38 presents a comparative view of the prediction errors for gate to runway transit times of two BN 

models created using the Phase I and Phase II approaches. 

 

a) Phase I model     b) Phase II model 
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Figure 38. Comparison of the Phase I (Left) and Phase II (Right) Mean and Standard Deviations of 

Prediction Errors for JFK Gate to Runway Transit Times 

The MAE and RMSE of the transit time prediction errors of the Phase I and Phase II models are: 

Phase I model: MAE = 61.5 seconds, RMSE = 98.61 seconds 

Phase II model: MAE = 39.4 seconds, RMSE = 51.1 seconds  

The results indicate the prediction performance is improved when using the Phase II model. 

5.2.7.2 Sensitivity of Prediction Accuracy to Quantity of Training Data 

To train models in a reasonable amount of processing time, we used only a subset of the simulations. 

However, one may ask, will increasing training data improve performance? We investigate this question 

by increasing the quantity of data used for the training data set from 60 percent of records in 150 files to 

from 60 percent of records in 600 files and comparing the prediction errors of the trained models. In this 

experiment, we select gate-runway transit time as the variable of interest and flights through one spot.   

Figure 39 shows the comparison of MAE and RMSE for all three airports with increasing number of 

training samples. The values are tabulated in Table 4.  

 

a) Mean absolute error   b) Root mean squared error 

Figure 39.  Prediction Errors of Phase II Approach with Increasing Training Samples from Flight 

Trajectories Through one Spot 
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Table 4. Prediction Errors of Phase II Approach with Increasing Training Samples from Flight Trajectories 

Through one or ALL Spots  

  Mean Absolute Error (MAE), 

Seconds 

Root Mean Square Error (RMSE), 

Seconds 

# of 

spots 

Size JFK EWR LGA JFK EWR LGA 

1 150 40.41 28.10 15.13 52.94 53.29 21.80 

1 300 39.70 27.25 15.12 51.85 44.44 22.00 

1 600 39.38 27.43 15.22 51.07 46.01 23.29 

ALL 150 64.99 53.59 21.93 85.73 76.00 50.00 

In almost all cases, the change in prediction error is minor. And the performance for 300 and 600 is very 

similar. Hence, we conclude that we need not use large number of simulation files to obtain superior 

models. Finally, we present the prediction results from a model trained and tested with flights through all 

spots. The last row of Table 4 shows the errors for all three airports. We notice that the maximum error is 

about 1.5 minutes.  

5.2.8 Simultaneous Application to Three Airports 

We established a method to predict runway arrival times for a departing flight based on its transit time 

probability distribution. The transit time prediction framework is integrated with the PROCAST scheduler 

to schedule flights for multiple airports simultaneously. This requires predicting taxi times for flights 

originating from different airports. 

We start with training three different BN models for three airports. The training sets are created using 

flights through all spots. We save the model parameters and the feature information as static data. During 

scheduling cycles, feature values are computed on the fly and transformed into appropriate data structures 

for BN predictions. Each flight, depending on its airport-id, is predicted using the appropriate BN model. 

The predicted mean and standard deviations are passed to PROCAST. 

6 Enhancements to SOSS 

In Phase II of the project we enhanced the NASA SOSS fast-time simulation with models of multiple 

airports and the terminal airspace of the New York metroplex, the ability to simultaneously simulate 

multiple airports, and the ability to schedule arrival and departure traffic of multiple airports. We describe 

the numerous components to the New York metroplex model, including airport runway configurations, 

airport surface and terminal airspace modeling, separation rules, traffic scenarios and validation of the 

metroplex model (Section 6.1). We describe enhancements to the SOSS simulation software enabling 
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simulation of New York metroplex traffic and scheduling of multi-airport arrival-departure traffic 

simulated by SOSS. 

6.1 New York Metroplex Model 

In Phase II we developed link-node models of the surface and (limited) terminal area for the other 

primary airports in the New York metroplex, EWR and LGA, and implemented them in SOSS. The 

airport model generation process involves the following steps: 1) selecting the airport runway 

configuration, 2) generating the required airport adaptation data, and 3) generating traffic scenarios. For 

the sake of completeness we include descriptions of the airport adaptation data such as the link-node 

models of the airport surface and terminal routes that were previously developed for JFK as well. 

Additional details regarding the development of the SOSS model of JFK can be found in prior reports 

[SS12] [SS15]. 

6.1.1 Airport Runway Configurations 

In the New York metroplex, the runway configurations used at the three major airports are coordinated by 

air traffic managers. We use runway configurations for EWR and LGA based on the JFK runway 

configuration used in Phase I: arrivals using both runways 31L and 31R, and departures using runway 

31L. We analyzed FAA Aviation System Performance Metrics (ASPM) data for the time period of 

January 2015 to November 2015 to determine the most commonly used runway configurations for the 

other New York area airports when JFK is running 31L, 31R|31L. Figure 40 shows the results of this 

analysis. At LGA the configuration with arrivals using runway 31 and departures using runway 04 (31|04) 

was used 25% of the time when JFK was using 31L, 31R|31L. The EWR configuration most commonly 

used during this period, at 42% of the time, was arrivals on runway 04R and departures on runway 04L 

(04R|04L). 

 

Figure 40. Analysis of ASPM Data to Determine Runway Configuration Models for EWR and LGA 
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The FAA has a useful website2 that allows visualization of interacting arrival flows, airspace, and fixes 

for various runway configurations for the New York area airports. The joint runway configurations and 

route structure that we model is based on a configuration shown in Figure 41, which is from the FAA 

TFM Learning Website. 

 

Figure 41. Joint Runway Configurations and Route Structure for JFK, EWR, and LGA 

6.1.2 Surface Link-Node Models 

The methods used to generate the JFK link-node model form the basis for our development of the models 

for EWR and LGA under this research effort. The JFK SOSS surface link-node model used in Phase I 

was originally developed in 2012 using the methods documented in [SS12]. For EWR and LGA the team 

started with surface link-node models that were originally generated for the NASA VAMS SLDAST 

project [AS09] [VC09]. We first convert the link-node model to SOSS format resulting in a two-

dimensional representation of the airport surface in SOSS. The link-node model is generated by adding 

and defining the node types in SOSS including spot nodes, departure nodes, arrival nodes, queue nodes, 

runway crossing nodes, and any additional intersection nodes. In addition we define the runway geometry 

by capturing the x and y coordinates of the vertices and by defining the length of the runway in meters. 

The runway heading is defined based on the FAA airport diagram and accounts for magnetic variation. 

The following figures show the surface link-node models along with a tabulation of the surface link and 

node types for EWR, LGA, and JFK. 

                                                      

2 http://tfmlearning.faa.gov/NY_Airspace/NY_Airspace_Pkg/NY_Airspace.swf 
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Figure 42. EWR Link-Node Model as Implemented in SOSS 

Table 5. EWR Link Node Model Characteristics 

Node Type Quantity Link Type Quantity Color 
Identifier 

Arrival 20 Arrival 19 Orange 

Departure 14 Departure 2 Magenta 

Queue 20 Queue 157 Cyan 

Runway Crossing 28 Runway Crossing 18 Red 

Taxiway 225 Taxiway 356 Green 

Spot 32 Spot 1 Yellow 

Ramp 99 Ramp 356 Blue 

Gate 158 Gate 18 Blue 
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Figure 43. LGA Link-Node Model as Implemented in SOSS 

Table 6. LGA Link Node Model Characteristics 

Node Type Quantity Link Type Quantity Color 
Identifier 

Arrival 18 Arrival 19 Orange 

Departure 4 Departure 5 Magenta 

Queue 14 Queue 9 Cyan 

Runway Crossing 10 Runway Crossing 15 Red 

Taxiway 96 Taxiway 141 Green 

Spot 12 Spot 1 Yellow 

Ramp 57 Ramp 61 Blue 

Gate 74 Gate 74 Blue 
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Figure 44. JFK Link-Node Model as Implemented in SOSS 

Table 7. JFK Link-Node Model Characteristics 

Node Type Quantity Link Type Quantity Color 
Identifier 

Arrival 20 Arrival 23 Orange 

Departure 15 Departure 17 Magenta 

Queue 72 Queue 60 Cyan 

Runway Crossing 36 Runway Crossing 13 Red 

Taxiway 481 Taxiway 618 Green 

Spot 26 Spot 37 Yellow 

Ramp 198 Ramp 236 Blue 

Gate 121 Gate 121 Blue 

6.1.3 Terminal Procedures 

In Phase I of this research effort we made enhancements to the SOSS platform to include modeling of 

arrival and departure routes for the runway configuration modeled at JFK [SS14] [SS15]. Terminal 
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procedures for JFK were derived from recorded surveillance data. Arrival routes from each arrival fix to 

each runway, and departure routes from each runway to each departure fix were determined from 

examination of surveillance track data. The surveillance track data was recorded by the Saab Sensis 

Aerobahn system operating at JFK. This system records aircraft position data on the airport surface and in 

the terminal airspace. Data used for this effort were recorded during the Fall of 2013. For each fix-runway 

or runway-fix pair, route clusters within the surveillance data were identified and less common flight 

paths were filtered out. The clusters were compared to arrival and departure procedures published for 

JFK, and the procedure that most closely matched the route cluster was used as the basis for the modeled 

Terminal Procedure route. The modeled Terminal Procedure routes included fixes identified in the 

published procedure as well as intermediate fixes added to define to the route where needed.  This process 

produced a modeled route as a sequence of latitude-longitude waypoints extending from arrival fix to 

runway or from runway to departure fix [SS15]. We follow a similar process to define the arrival and 

departure routes for the EWR and LGA in Phase II. In addition to using ASDE-X data, we use CTAS 

cm_sim data [ME14] provided by NASA along with published charts and Architecture Technology’s 

AvScenario [SD04] scenario generation tool to identify commonly used arrival and departure routes. As 

in Phase I, we develop a set of routes for the given runway configuration that is modeled as a sequence of 

waypoints from runway to fix, and fix to runway. 

6.1.4 Arrival and Departure Fixes 

The team identified the arrival and departure fixes for the EWR, LGA and JFK airport model using 

multiple online resources such as AirNav.com and FAA OIS.  Table 8 lists the modeled arrival and 

departure fixes for each of the airports.  

Table 8. Modeled Arrival and Departure Fixes for EWR, LGA, and JFK Airports 

Airport Arrival Fixes Departure Fixes 

EWR SAX, PENNS, DYLIN, RBV BAYYS, BIGGY, BREZY, 

COATE, COL, ELIOT, GAYEL, 

GREKI, LANNA, NEION, 

PARKE, WHITE 

LGA EMPYR, HAARP BAYYS, BIGGY, COATE, 

COL, DIXIE, ELIOT, GAYEL, 

GREKI, LANNA, MERIT, 

NEION, PARKE, WHITE 

JFK CAMRN, LENDY, ROBER BDR, BETTE, COATE, DIXIE, 

GAYEL, GREKI, HAPIE, 

MERIT, NEION, RBV, SHIPP, 

WAVEY 

6.1.5 Surface Routes 

The team generated a list of surface arrival and departure routes, whereby each route is defined by 

specifying a sequence of nodes between gates and runways. A surface arrival route starts with an arrival 

node at the runway and ends with a gate node. A surface departure route starts with a gate node and ends 

with a departure node at the runway. For EWR and LGA we specify gate-departure node pairs, arrival 

node-gate pairs, and intermediate nodes for each pair. We then use the “shortest path” feature in SOSS to 

define taxi-in and taxi-out routes for all possible node pairs. This process results in 833 arrival and 

departure routes for EWR, and 444 arrival and departure routes for LGA. During our validation of the 
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surface models, it was noted that the LGA shortest path taxi routes resulted in deadlock situations in 

SOSS. This meant that SOSS was in some cases unable to resolve potential conflicts between aircraft, and 

would not be able to complete the simulation run. Because of this we modified the taxi-in and taxi-out 

routes to reflect a more realistic use of the taxiways that also avoided the deadlock situation in SOSS. The 

JFK predefined arrival and departure taxi routes were generated based on analysis of surface surveillance 

data [SS12]. In the JFK model, there were 2 arrival runways (e.g., 31L and 31R), 1 departure runway 

(e.g., 31L), and 183 gates. There were 6 runway exits (3 each for 31L and 31R) among the arrival 

runways, and 3 runway entry points for the departure runway. The various gate-runway entry/exit 

combinations yielded a total of 2,460 routes for JFK for just a single runway configuration. This included 

1,230 arrival routes and 1,230 departure routes. 

6.1.6 Runway Separation Requirements 

In SOSS, separation matrices are used to specify the minimum required temporal separation between two 

successive operations on the same runway or a pair of interacting runways in the simulation. Matrices 

define different separations for different leader-follower aircraft weight classes. The separation matrices 

cover four aircraft weight classes―Heavy (H), Large (L), Boeing 757 (B757), and Small (S) as per the 

standard FAA definitions [SS12]. For each modeled airport runway configuration, we define the possible 

interactions between aircraft arrivals and departures. Runway interactions are based on factors such as 

runway geometry (e.g. same runway or parallel runways) and/or pairs of aircraft operations (e.g. arrival 1 

causes wake turbulence for departure 2). As a result, a single airport and operating condition may require 

multiple separation tables to describe the minimum separation requirements for the specified runway 

configuration [ACES05]. Note that because SOSS does not delay arrivals, no separation matrix is 

specified for arrival-arrival pairs. For JFK, we use the runway interactions and runway separation 

matrices defined in [SS12]. For EWR and LGA we use runway separation matrices that correspond to the 

runway interactions from the individual runway modeling data developed during the NASA ACES B3 

development effort [ACES05]. The runway interactions and actual values for the runway separation 

matrices are contained in Appendix A of this document. 

6.1.7 Traffic Scenarios 

Traffic scenarios are generated based on historical NAS-wide demand data from 2011-2012 provided to 

NASA by the FAA Air Traffic Organization (ATO). These same sample days were previously used for a 

NASA project [LMI15] focused on analyzing and identifying choke points in the NAS. The FAA 

generates the schedule for a set of 16 sample days for each calendar year. Four sample days are selected 

in each quarter to stratify representative different demand levels, seasonal patterns, weather patterns, and 

delay outcomes across the NAS. The days are selected so that their averages match to the annual averages 

for the entire NAS and for the Air Traffic Control Centers in major statistics including demand level, 

delay for all flights and for IFR flights [LMI14]. The 16 samples days provided by the FAA are: 

10/1/2011, 10/30/2011, 11/17,2011, 12/19/2011, 2/04/2012, 2/28/2012, 3/16/2012, 3/20/2012, 4/30/2012, 

5/04/2012, 5/13/2012, 6/11/2012, 7/14/2012, 7/25/2012, 7/30/2012, 9/05/2012. The availability of 16 

sample days can be used to support annualization of results by capturing a variety of influences in the 

sample. In addition, the use of sample days of different demand levels, seasons, and weather can be used 

to support sensitivity analysis. Figure 45 shows the number of ASPM operations for each sample day. 

This gives an indication of traffic levels in each of the sample days [LMI15].  
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Figure 45. FAA ATO Sample Days, Labeled in Green, Provided to NASA for this Research (Courtesy of 

LMI) 

The FAA demand sets contain ETMS-based information on flights operating in the NAS such as flight 

plan information as well as planned/reported Gate Out, Wheels Off, Wheels On, and Gate In times 

[FAADD]. However to make traffic scenarios for use in SOSS we need to supplement the FAA demand 

data with all of the per flight information required for a traffic scenario in SOSS. We first identify the 

required data fields for SOSS traffic scenarios, and then determine the data sources for those fields. The 

required data includes gate assignments, spots, runways, departure and arrival fixes, departure and arrival 

routes, and departure and arrival times. For gate assignments we analyze FlightStats data to characterize 

distribution of airlines to gates, and then develop an algorithm to assign flights to terminals. We leverage 

gates defined in SOSS adaptation data for each airport; and assign individual gates to flights in each 

terminal using a round-robin distribution method. We assign spots to flights based on spot-terminal 

mapping inherent in SOSS adaptation data for airport. Runway assignment for departures is 

straightforward since we have only one departure runway for each airport. For multiple arrival runways 

(JFK), we use a method that we developed for the Choke Point project [LMI15] to assign runway based 

on origin airport. Similarly, we use methods to assign departure or arrival fix based on origin (arrivals) or 

destination (departures) airport. The departure route is unique to the runway-fix combination. We 

determine the simulation start time for departures based on the scheduled gate departure time, and the 

start time for arrivals as the actual or scheduled “On” time minus the transit time. We obtain this 

information from the SOSS adaptation data, the FAA traffic files, and other external sources. We then 

determine the methods for assigning data to each field for each flight and develop scripts that: 

 Read in FAA flight traffic demand set, extract flights of interest, put each flight into SOSS-

compatible data structure, and populate each flight’s data structure fields with data available. 

 Read SOSS adaptation data and based on developed rules, assign each flight’s data structure 

fields with data available. 
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 Based on external data sources and developed rules, assign each flight’s data structure fields with 

data available.  

 Write output file as per SOSS format requirements. 

 Conduct SOSS simulation to verify compatibility. 

 Analyze SOSS output data to verify flights are being simulated as per input file 

specifications/data. 

In this manner we develop SOSS traffic scenario files that will provide simulated traffic for the three 

airport surface and terminal models implemented for EWR, JFK, and LGA. These methods could 

potentially be applied in future research to develop SOSS traffic scenarios for any modeled SOSS airport 

surface and terminal airspace model. 

We selected a subset of the 16 sample days to generate traffic scenarios for validation of the SOSS 

models, training of the BNs, and evaluation of our PROCAST solution architecture.  

Table 9. Traffic Scenarios for Phase II Training, Validation and Evaluation 

 EWR JFK LGA 

Training 9/5/12 18-23 Local 

7/25/12 6-11 Local 

5/13/12 2-7 Local 

3/16/12 13-16 Local 

9/5/12 18-23 Local 

7/25/12 6-11 Local 

Validation 5/13/12 0-23 Local 

6/11/12 0-23 Local 

9/5/12 0-23 Local 

5/13/12 0-23 Local 

6/11/12 0-23 Local 

9/5/12 0-23 Local 

5/13/12 0-23 Local 

6/11/12 0-23 Local 

9/5/12 0-23 Local 

Evaluation 7/25/12 7-9 Local 

3/16/12 8-10 Local 

7/25/12 7-9 Local 

3/16/12 8-10 Local 

7/25/12 7-9 Local 

3/16/12 8-10 Local 

6.1.8 Model Validation 

Airport surface models are validated by comparing simulated operational metrics such as taxi-in and taxi-

out times with historical operational metrics from the FAA’s ASPM performance database. For SOSS 

validation, we developed traffic scenarios for time periods during which the airports were actually 

operating with the runway configurations used in our SOSS adaptations. We then compare SOSS traffic 

counts and taxi-in/taxi-out times with FAA ASPM data for those time periods of interest. 

Table 10 shows a comparison of the arrival and departure counts simulated in SOSS for our validation 

traffic scenarios with the historical traffic counts contained in the FAA ASPM database. The SOSS input 

file creation software captures arrivals and departures by their scheduled arrival and departure times in the 

FAA data. We verified that number of flights reported in the SOSS simulation approximate the number of 

flights reported in the SOSS simulation analysis results. However, there may be differences in the number 

of SOSS simulated flights and the ASPM scheduled flights. This FAA schedule data may be different 

from the schedule data used for the ASPM counts due to changes in the scheduled flights throughout the 

day including the actual number of flights in the schedule and when scheduled arrival and departure times 

are binned. 
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Table 10. Comparison of SOSS and ASPM Arrival and Departure Counts 

   Total Departure Count Total Arrival Count 

Airport Date Time ASPM SOSS ASPM SOSS 

EWR 9/5/2012 18-23 Local 151 161 177 151 

EWR 7/25/2012 6-11 Local 213 231 149 170 

JFK 5/13/2012 2-7 Local 47 58 62 57 

JFK 3/16/2012 13-16 Local 111 122 166 168 

LGA 9/5/2012 18-23 Local 127 120 184 142 

LGA 7/25/2012 6-11 Local 234 241 169 180 

We originally used the shortest-path taxi routes that are automatically generated by SOSS based on the 

airport link/node model. However, during our validation activities we observed that the traffic scenarios 

and the routes used led to cases of “gridlock” in SOSS where SOSS would not be able to resolve conflicts 

between taxiing aircraft. For this reason we modified the taxi routes modeled at LGA to try to avoid the 

gridlock situation – particularly between arriving and departing traffic. After making this modification we 

reran our SOSS validation traffic scenarios in order to compare taxi times in SOSS with historical taxi-

time data from ASPM. Table 11 shows that SOSS is fairly consistent in the times it simulates, but both 

the taxi-out and taxi-in times are low compared to ASPM. Although taxi-times do not match historical 

data, they are consistent and therefore provide a reasonable basis for evaluating different models of 

uncertainty and prediction. 

Table 11. Comparison of SOSS and ASPM Taxi-Out and Taxi-In Times 

   Average Taxi-Out Time 

(minutes) 

Average Taxi-In Time 

(minutes) 

Airport Date Time ASPM SOSS ASPM SOSS 

EWR 9/5/2012 18-23 Local 25.2 6.2 9.7 6.1 

EWR 7/25/2012 6-11 Local 27.6 6.2 8.7 5.9 

JFK 5/13/2012 2-7 Local 17.6 10.1 7.1 5.8 

JFK 3/16/2012 13-16 Local 33.2 10.5 8.1 6.5 

LGA 9/5/2012 18-23 Local 27.9 5.1 9.5 4.1 

LGA 7/25/2012 6-11 Local 30.7 5.1 8.1 4.3 

We reviewed and discussed our modeled taxi routes and our traffic counts and taxi-time comparisons with 

Ralph Tamburro of the PANYNJ. Mr. Tamburro offered the following comments regarding our taxi route 

models and our validation results. 

 The taxi routes for EWR and LGA looked reasonable.  
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 The taxi-out differences are most likely due to flow restrictions impacting departures that SOSS is 

not modeling. 

 JFK departure metering was in operation during 2012. Metering accounts for the runway 

departure rate but not the departure restrictions. Metering attempts to maintain a target queue 

length of 12-15 departures. JFK departure metering specifies movement area entry time. Aircraft 

OUT times to meet movement area entry times can vary: departures can push back early to absorb 

delay in the ramp, or push back later to absorb delay at the gate. 

 Also, at LGA, uncertainty in arrival landing times impacts departure throughput due to the 

crossing runways. This contributes to taxi-out delay. The arrivals to runway 31, departures from 

runway 4 configuration is particularly sensitive to this because of the circling approach to runway 

31, and the intersection of the runways is at the far (long) end of the runways. 

 Regarding the number of flights: 

o EWR: 213/231 departures for 7/25/2012 is normal; 151/161 departures for 9/5/2012 is 

low. 

o LGA: 127/120 departures for 9/5/2012 is light; 234/241 departures for 7/25/2012 is low. 

o JFK: 111/122 departures for 3/16/2012 3/16/2012 seems normal; 47/58 departures for 

5/13/2012 is low. JFK weather on 3/16/2012 looked okay. IFR day, but winds mild, 

visibility cleared in late afternoon. 

6.2 Multi-Airport Traffic Scheduling 

The operational environment for the multi-airport simulation involves multiple SOSS processes—one 

simulating each metroplex airport—and the multi-airport scheduler (see Figure 46).  This is enabled by a 

socket interface in the scheduler that creates an individual socket for each SOSS process. The scheduler 

acts as a server and waits for the SOSS processes. The SOSS processes call the scheduler periodically 

based on a set call interval (e.g. every 300 seconds of simulation time) and send the scheduler a data 

package of flights to be processed within the particular schedule cycle.  

 

Figure 46. Scheduler-SOSS Architecture 
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6.2.1 Synchronization 

The individual SOSS applications have no capacity to stay synchronized with each other, so the scheduler 

must synchronize the simulations. To do this, the scheduler is designed to wait for each SOSS process to 

complete its cycle prior to actually processing the data.  In-between schedule cycles, each SOSS process 

runs independently and at its own pace. The SOSS applications run with the same call interval and to 

“Block” the scheduler calls so that the SOSS processes don’t start running again until a scheduler 

message has been received. By blocking on scheduler calls, maintaining the same call interval, and by the 

scheduler waiting for each SOSS to return before scheduling, the simulation stays synchronized. 

There are two additional modifications to SOSS to make the metroplex simulation function properly.  

First, SOSS needed to always send a message and block on the call interval regardless of whether there 

were any flights in the forecast window. The nominal version of SOSS only sent a message if there were 

flights to schedule so that if there was a gap in the demand set, one SOSS could perpetually suspend the 

entire simulation. To overcome this, a special empty message protocol was set up between the scheduler 

and SOSS so that SOSS would always send message and block regardless of message content. The other 

problem occurred when a particular SOSS process finished its run prior to the other SOSS processes and 

would stop sending messages. This would cause the simulation to perpetually suspend as well. The SOSS 

code was modified to continue to run after completing the simulation of its own traffic demand set, and to 

send empty messages until a prescribed time was reached.  

6.2.2 Pushback Times 

Each SOSS process sends a data package to the scheduler that includes information about all the flights 

within the forecast window. This information includes the routing of the aircraft and the originally 

scheduled pushback time (departure) or its arrival fix crossing time (arrival). When the scheduler sends 

back a de-conflicted schedule it sends back updated pushback times.  However, on successive cycles, 

SOSS doesn’t send the updated pushback time to the scheduler, but rather the original pushback time, 

even though SOSS will apply the updated pushback time when releasing the aircraft.  Since the scheduler 

does not maintain state between cycles, the actual pushback time is unknown to the scheduler after the 

first scheduling of a particular flight. Furthermore, SOSS seems to always use the latest push time (the 

one most in the future) rather than the push time from most recent message received. Therefore, the 

current schedule cycle could not override prior push times unless it was adding additional delay. To 

correct this, the SOSS message was modified to send back the delayed pushback time in addition to the 

original pushback time. This way, the scheduler knows the actual push back time for a particular flight.  

This additional message element is illustrated in Figure 47. 

 

Figure 47. Scheduler-SOSS Message Time Fields 

The fast-time simulation experiments with SOSS evaluated a baseline scheduler and the PROCAST 

probabilistic scheduler. The baseline scheduler was modified to use the delayed pushback time, anytime it 

was later (in the future) than the original time.  When running the baseline scheduler alone, this improved 
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the scheduler performance from a conflict reduction perspective.  Virtually no spacing conflicts were 

observed in this configuration.  Unfortunately, when the baseline scheduler was run in this configuration 

in the multi-future context of the PROCAST probabilistic scheduler, the use of the delayed pushback time 

led to cascading delay instability. That is, delay would be continually added and some flights would never 

finish. This phenomenon is still not completely understood.  To correct this problem, the use of the 

delayed pushback time had to be suspended.  Instead, the scheduler would never use anything other than 

the original pushback time.  This fix results in a less precise scheduler, where not all aircraft are 

scheduled to be in a conflict-free state, however it lacks any cascading delay instability.  

7 Evaluation of PROCAST Using Fast-Time Simulation 

This section presents the design of experiments for and results and observations from simulation-based 

evaluation of the PROCAST multi-airport traffic scheduling with deterministic and alternative 

probabilistic departure taxi time models. In addition, alternative methods for specifying a traffic schedule 

from multiple scheduled futures are also explored. We present the experiment design, including the 

evaluation architecture, metrics, PROCAST control variables and traffic conditions (Section 7.1). We 

present the departure delay results obtained from the simulation evaluations of the PROCAST conditions 

for the New York metroplex (Section 7.2). We present the methods for and results of evaluating 

alternative methods for PROCAST to specify the “statistically best” traffic schedule (Section 7.3). 

7.1 Experiment Design 

In Phase II we focused on developing and investigating the use of BNs to probabilistically model and 

predict taxi-times on the airport surface within the PROCAST framework. After completing integration 

and testing of the major components of the PROCAST solution architecture including the SOSS airport 

surface/terminal models, the multi-airport scheduling algorithms, and the BN evaluation framework and 

engine, we ran a number of traffic scenarios. We compared the effectiveness of the BNs with a simple 

probability model (distribution). We also compared the effectiveness of the probability models based on 

the number of futures used in a given scheduling cycle. The hypothesis was that the use of probabilistic 

modeling for taxi-time prediction makes the integrated arrival and departure scheduling more robust to 

uncertainties and therefore more likely to be useful in future air traffic management decision support 

tools. 

Table 13 shows our experiment matrix describing the PROCAST runs along with the various probability 

modeling configurations. We made runs of PROCAST using two-hour traffic scenarios derived from the 

FAA demand data that are dissimilar to the traffic scenarios used for training the BNs. Simulation with 

interacting traffic causes sensitivity to initial conditions (gate pushback times = pushback readiness times 

+ scheduling delays), and therefore uncertainty in taxi times. 

7.1.1 Test Architecture 

Fast-time simulation-based assessments were conducted using three synchronized instances of the SOSS 

simulation software, each simulating a different airport in the New York metroplex, as described in 

Section 6.2.  In this configuration, the CD&R feature of SOSS is turned on. Using this platform, we tested 

and compared the performance of metroplex airport traffic under the control of either a baseline scheduler 

or the PROCAST probabilistic scheduler. The baseline scheduler for the evaluations used the multi-

airport scheduling algorithms of PROCAST described in Section 4.1, however only scheduled a single 

future predicted using purely deterministic transit time models. The deterministic transit time models 

correspond to unimpeded transit of an aircraft as modeled by SOSS. The PROCAST probabilistic 

scheduler for the evaluations used the multi-airport and probabilistic scheduling components described in 

Section 4. For the evaluations, the PROCAST scheduler used one of two probability models for gate-to-

runway taxi time:  A simple model or a BN model. 
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The simple probability model approximates the distribution of departure taxi times for each airport as 

Gaussian with mean and standard deviation that are fixed.  The values used are given in Table 12. 

Table 12. Parameters for the Simple Probability Model for each Airport 

Airport Mean (seconds) Standard Deviation 

John F. Kennedy (JFK) 670.5 266.4 

Newark (EWR) 385.9 124.8 

LaGuardia (LGA) 326.6 83.2 

These parameters were extracted from the Phase II simulation data that we also used to train and test the 

Bayesian network models.  This data set is described in Section 5.  We used the whole data set, and 

straightforwardly computed these two statistics for all departures, per airport. 

The BN models of departure taxi times for the airports were created as per the methodology described in 

Section 5. Each model treats the gate-to-runway taxi time as a random variable in a (large) joint 

distribution.  The other variables in the distribution include features of the individual flight being 

predicted, as well as metrics of the traffic level at many significant points on the airport surface. The 

model uses Bayesian inference to compute a posterior distribution for taxi time, given the measured or 

predicted values of most of the other variables.  We used machine learning to derive the joint distribution, 

in the form of a Bayesian network, from extensive set of SOSS simulation output data for each airport. 

We created a separate distribution for each airport.   

7.1.2 Evaluation Metrics 

The primary metric of interest for our evaluation is average per-aircraft delay for departures at each of the 

three airports modeled. We focus on departures because the multi-airport scheduler of PROCAST 

assumes gate holding as the primary means to manage departures; that is, the scheduler feeds back all the 

scheduled delay for each departure to its gate pushback time to avoid congestion and delays on the 

taxiways or at the runway queue. In our simulations, departure delay is composed of two components: 

gate delay and taxi delay. Gate delay is the difference between the departure’s initial (e.g., airline-

scheduled) gate pushback time (provided as input data to SOSS) and its actual gate pushback time in the 

SOSS simulation. Taxi delay is the difference between the departure’s actual gate pushback-to-runway 

takeoff time and the unimpeded gate-runway transit time computed by SOSS. In the experiment platform, 

gate delay is assigned by the scheduler, and taxi delay is assigned by SOSS based on its CD&R logic. 

Gate delay is assigned by the scheduler to strategically meter and separate traffic as per the capacity 

constraints of the fixes and runways. Taxi delay is assigned by SOSS to tactically separate aircraft on the 

surface for safety (conflict detection and resolution).  

For each airport we plot the average delay per aircraft for the baseline case of scheduling with 

deterministic taxi time models (i.e., the baseline scheduler), and for each of the scheduling cases listed in 

Table 13 which use the probabilistic taxi time models (i.e., the PROCAST probabilistic scheduler using 

different taxi time models). We expect that the use of probabilistic models with scheduling will improve 

the traffic performance achieved with scheduling in light of uncertainties or variability in traffic. 

7.1.3 Experiment Matrix 

Table 13 lists the six different scheduler configurations that we tested.  For the PROCAST probabilistic 

scheduling, the number of futures generated and examined in each scheduling cycle can be varied. The 

baseline scheduler uses just one future, however predicted using deterministic models of transit time.  The 

phrase “Sample, schedule, and down-select” in the table is a shorthand for our general probabilistic 
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scheduling approach using futures, as described in Section 4, comprising multi-airport scheduling for a 

single future and schedule specification from multiple scheduled futures. 

For the special case of the Bayesian network model with one future, we did not sample from the predicted 

(posterior) distribution for each flight. Instead, we used the mean of this distribution directly as the 

prediction.  Thus, scheduling in this case is the same as baseline scheduling, except that the estimate of 

departure taxi time, rather than being the deterministic unimpeded value, is obtained from our 

probabilistic Bayesian network model and is separately estimated for each flight. 

Table 13. LEARN Phase II PROCAST Experiment Matrix 

Departure Taxi Time Model Number of 

Futures 

Notes 

Deterministic 1 PROCAST scheduling based on single future 

predicted from deterministic departure taxi time model 

No down-select due to deterministic transit time 

Simple Probabilistic (Univariate 

Gaussian) 

10 PROCAST scheduling based on multiple futures 

predicted from Gaussian distributed probabilistic 

departure taxi time model 

Sample, schedule, and down-select 
Simple Probabilistic (Univariate 

Gaussian) 

100 

Bayesian Network 1 PROCAST scheduling based on single future 

predicted from BN departure taxi time model 

No down-select due to using mean of posterior 

distribution of transit time 

Bayesian Network 10 PROCAST scheduling based on single future 

predicted from BN departure taxi time model 

Sample, schedule, and down-select 
Bayesian Network 100 

7.1.4 Traffic Scenarios 

We tested each scheduler configuration with two two-hour traffic scenarios.  The scenarios are derived 

from the actual schedules at the three New York metroplex airports on two specific days.  

Table 14 lists the two dates and times uses, and the number of arrivals and departures at each airport in 

each scenario. 

Table 14. Traffic Scenario Arrival and Departure Counts for PROCAST Experiments 

Date, Time EWR JFK LGA 

7/25/12, 7-9 AM Local Arrivals: 61 

Departures: 68 

Arrivals: 29 

Departures: 64 

Arrivals: 66 

Departures:64 

3/16/12, 8-10 AM Local Arrivals: 73 

Departures: 68 

Arrivals: 77 

Departures:64 

Arrivals: 64 

Departures:64 
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7.2 Results and Observations 

We made runs of PROCAST using the different departure taxi time models as shown in Table 13 for each 

of the two traffic scenarios based on the same FAA sample days shown in Table 14. The average gate, 

taxi and total delay performances of departures from these runs are displayed in bar graphs in Sections 

7.2.1 and 7.2.2.  We have arranged these bar graphs to show the delays across all scheduling 

configurations for each scenario, and for each airport, separately (Figure 50, Figure 48, Figure 49, Figure 

54, Figure 52, and Figure 53).  We also include a comparable bar graph with data that is averaged across 

the three airports (Figure 51 and Figure 55). 

7.2.1 Results for 7/25/12 Traffic Scenario 

The departure delay performances obtained for the 7/25/2012 traffic scenario are presented for the 

individual airports JFK, LGA and EWR in Figure 48, Figure 49 and Figure 50, respectively, and for the 

three airports combined in Figure 51. Figure 48 below presents the departure delay results for JFK. 

 

Figure 48. JFK Departure Delays for 7/25/12 Traffic Scenario 

The results indicate that, in the baseline case of PROCAST using the deterministic departure taxi time 

model for traffic scheduling, the average total delay of the JFK departures is 46.6 minutes (Baseline), 

whereas in the cases of PROCAST using the different probabilistic departure taxi time models for traffic 

scheduling, the average total delays of the JFK departures are significantly less. The average total 

departure delays in the probabilistic cases range from 17.6 minutes with PROCAST scheduling based on 

100 futures sampled from the BN model (BayesNet100), to 26.4 minutes with PROCAST scheduling 

based on 100 futures sampled from the simple univariate Gaussian model (Simple100). Thus, the 

reductions in average total delay for JFK departures realized by employing PROCAST traffic scheduling 

with the probabilistic taxi time models range from 20.2 minutes (Simple100) to 29.0 minutes 

(BayesNet100); these are significant reductions. 
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Gate Delay 46.63 19.72 26.40 20.63 24.08 17.62

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

A
ve

ra
ge

 D
e

la
y 

P
e

r 
A

ir
cr

af
t 

(m
in

u
te

s)

JFK Departure Delays 
(7/25/2012 7-9 AM Local Time)



Novel, Multidisciplinary Global Optimization Under Uncertainty, Phase II Final Report  Version 1 

Architecture Technology Corporation   October 31, 2016 

69 

 

Comparison of the average taxi-out delays of PROCAST traffic scheduling between the baseline 

deterministic and the alternative probabilistic taxi time models indicates a slight trade-off in the 

probabilistic cases with the introduction of taxi-out delay. In the baseline case, the taxi delay is 

approximately zero, indicating the scheduled gate pushback times of the departures allow for essentially 

unimpeded transit between pushback and takeoff. In the probabilistic cases, the average total and gate 

delays are sharply reduced, however departures accrue some taxi-out delay as they encounter other 

aircraft on the surface. With the Simple10 model, average taxi-out delay is 0.75 minutes, and with the 

BayesNet1 model, average taxi-out delay is 1.50 minutes. Nevertheless, the average taxi-out delays of the 

departures are quite low. The negligible average taxi-out delay of departures in the baseline case would 

minimize JFK surface traffic congestion and the fuel burned by JFK departures while taxiing. However, 

the excessive average departure delay and the almost zero average taxi-out delay indicate the runways of 

JFK may be under-utilized by departures and average departure throughput of JFK may be lower than that 

of the probabilistic cases. In the probabilistic cases, the significant reduction in average total delay and the 

introduction of a small amount of taxi-out delay indicates PROCAST traffic scheduling using with the 

probabilistic taxi time models likely improves the utilization of the runways of the airport. Comparison of 

the departure throughput of JFK under the baseline and probabilistic cases would confirm this. 

The differences in the departure delay performances of the different PROCAST probabilistic scheduling 

cases require deeper analysis and further investigation to understand and explain. Comparing the results 

of PROCAST traffic scheduling using the different probabilistic taxi time models, our hypothesis 

proposing improved traffic performance with more refined probability modeling and increased sampling 

was not clearly confirmed. The BayesNet100 condition of PROCAST scheduling using 100 futures 

sampled from the BN model supports the hypothesis, as it provides the lowest average departure delay of 

17.6 minutes and the second-highest average taxi-out delay of 1.4 minutes. However, the Simple100 

condition of scheduling using 100 futures sampled from the simple Gaussian model resulted in average 

gate, taxi and total delays for departures which were higher than those obtained from the Simple10 

condition of scheduling using 10 futures sampled from the simple Gaussian model. Similarly, the 

BayesNet10 case of scheduling using 10 futures sampled from the BN model resulted in higher average 

total delay, although slightly less average taxi-out delay, than the BayesNet1 case of scheduling using 1 

future sampled from the BN model. A deeper analysis and comparison of the characteristics of the 

departure schedules produced in each case, including the inter-aircraft spacing and transit times inherent 

in each schedule, and the quantity of conflicts resolved by the SOSS CD&R functionality, would help to 

understand the differences in the departure delay results obtained for the different probabilistic cases. 

Figure 49 below presents the departure delay results for LGA for the 7/25/12 traffic scenario. 
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Figure 49. LGA Departure Delays for 7/25/12 Traffic Scenario 

The results for LGA are similar to those for JFK. That is, the baseline case exhibits the highest average 

total delay and an average taxi-out delay of almost zero, and the probabilistic cases exhibit less average 

total delays and greater average taxi-out delay. However, for LGA, the difference in average total 

departure delay between the baseline case and probabilistic cases is less stark. Among the probabilistic 

cases for LGA, the trends in the total departure delays are similar to the JFK results, although for LGA 

the BayesNet1 case of scheduling with 1 future sampled from the BN model provides the lowest delay, 

slightly better than the BayesNet100 case of scheduling with 100 futures sampled from the BN model. 

Also, among all the taxi time model cases of LGA, the average taxi-out delay account for a higher 

percentage of the total departure delay than for the JFK cases. 

Figure 50 below presents the departure delay results for EWR for the 7/25/12 traffic scenario. 
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Figure 50. EWR Departure Delays for 7/25/12 Traffic Scenario 

The results indicate that, for EWR, the BayesNet1, BayesNet10 and BayesNet100 cases of PROCAST 

scheduling using futures sampled from the BN model resulted in less average total departure delay than 

for the Baseline case of PROCAST scheduling using the deterministic taxi time model and the Simple10 

and Simple100 cases of PROCAST scheduling using futures sampled from the simple Gaussian model. 

Thus, these results are in-line with our hypothesis of improved traffic performance with improved taxi 

time modeling and increased sampling. However, contradictory to our hypothesis, the average total delay 

of the Simple100 case exceeds that of the Simple10 case, and the average total delay of the BayesNet10 

case exceeds that of the BayesNet1 case. 

Figure 51 below presents the departure delay results for JFK, LGA and EWR combined for the 7/25/12 

traffic scenario. 
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Figure 51. Average Departure Delays for EWR, JFK, and LGA for 7/25/12 Traffic Scenario 

The results indicate that the Baseline case results in the highest departure delays with negligible taxi-out 

delays, and that BayesNet100 case of the PROCAST scheduling using 100 futures sampled from the BN 

model of taxi time resulted in the lowest average total delay and some marginal average taxi-out delay. 

The Simple100 case of PROCAST scheduling using 100 futures sampled from the simple Gaussian taxi 

time model produced the highest delays among the probabilistic scheduling cases. The BayesNet10 case 

resulted in higher average total and taxi-out delays than for the BayesNet1 case and the Simple10 case. 

7.2.2 Results for 3/16/12 Traffic Scenario 

The departure delay performances obtained for the 3/16/2012 traffic scenario are presented for the 

individual airports JFK, LGA and EWR in Figure 52, Figure 54 and Figure 53, respectively, and for the 

three airports combined in Figure 55. Figure 52 below presents the departure delay results for JFK in the 

3/16/2012 scenario. 
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Figure 52. JFK Departure Delays for 3/16/2012 Traffic Scenario 

The results indicate that the JFK departure delays realized with the probabilistic scheduling are much 

higher for this traffic scenario than those realized in the 7/25/2012 traffic scenario. In this traffic scenario, 

the average total departure delays for the Simple10 and Simple100 cases are 42.5 and 56.8 minutes, 

respectively, whereas for the 7/25/2012 scenario they are 19.7 and 26.4 minutes, respectively. Similarly, 

the average total departure delays for the BayesNet1, BayesNet10 and BayesNet100 cases are 34.4, 41.6 

and 39.2 minutes, respectively, whereas for the 7/25/2012 scenario they are 20.6, 24.1 and 17.6 minutes, 

respectively. In addition, the total average departure delays for the Simple10 and Simple 100 cases exceed 

the delay of the Baseline case, a trend which is different from those observed in any of the airports for the 

7/25/2012 traffic scenario. 

Figure 53 below presents the departure delay results for LGA in the 3/16/2012 scenario. 
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Figure 53. LGA Departure Delays for 3/16/2012 Traffic Scenario 

In this traffic scenario for LGA, the magnitude of the average departure delay among the different taxi 

time model conditions, Baseline, Simple10, Simple 100, BayesNet1, BayesNet10 and BayesNet100, are 

somewhat lower than those in the 7/25/2012 case. In this traffic scenario, they range from 3.9 minutes for 

the BayesNet100 case to 5.3 minutes for the Simple10 case, and 7.9 minutes for the Baseline case. In the 

7/25/2012 case, they range from 5.4 minutes for the BayesNet100 case to 8.9 minutes for the Simple100 

case, and 11.5 minutes for the Baseline case. The average taxi-out times for departures obtained in this 

traffic scenario are also greater—and a greater portion of the total delay—than in the 7/25/2012 traffic 

scenario. Nevertheless, the trends in the delays obtained with PROCAST scheduling among the different 

departure taxi time models are similar to the 7/25/2012 results—with the exception of the average total 

delay in the BayesNet10 case being less than that of the BayesNet1 and BayesNet100 cases. 

Figure 54 below presents the departure delay results obtained for EWR in the 3/16/2012 scenario. 
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Figure 54. EWR Departure Delays for 3/16/2012 Traffic Scenario 

In this traffic scenario for EWR, the magnitude of the average departure delay among the different taxi 

time model conditions, Baseline, Simple10, Simple 100, BayesNet1, BayesNet10 and BayesNet100, are 

also somewhat lower than those in the 7/25/2012 case. In this traffic scenario, they range from 2.6 

minutes for the Simple10 case to 3.1 minutes for the Simple100 case, and 4.5 minutes for the Baseline 

case. In the 7/25/2012 case, they range from 6.5 minutes for the BayesNet100 case to 18.0 minutes for the 

Simple100 case, and 18.8 minutes for the Baseline case. The average taxi-out times for departures 

obtained in this traffic scenario are also lesser—however a greater portion of the total delay—than in the 

7/25/2012 traffic scenario. Nevertheless, the trends in the delays obtained with PROCAST scheduling 

among the different departure taxi time models are similar to the 7/25/2012 results—with the exception of 

the average total delay in the BayesNet10 case being less than that of the BayesNet1 and BayesNet100 

cases, and being greater than the Simple100 case. 

Figure 51 below presents the departure delay results for JFK, LGA and EWR combined for the 7/25/12 

traffic scenario. 
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Figure 55. Average Departure Delays for EWR, JFK, and LGA for 3/16/2012 Traffic Scenario 

The results indicate that the Simple100 case results in the highest departure delays and the smallest taxi-

out delays among all the cases, and that BayesNet1 case resulted in the lowest average total delay and 

some marginal average taxi-out delay. The BayesNet10 case resulted in higher average total and taxi-out 

delays than for the BayesNet1 case. 

7.2.3 Summary 

In summary, with one exception, in each of the per-airport/per-scenario delay data, we observe the same 

pattern: The Baseline condition of PROCAST scheduling with deterministic taxi time models produces 

relatively large gate delays and very small taxi delays, and the other five instances of PROCAST 

scheduling using different probabilistic taxi time models produce larger taxi delays, and usually with 

significantly smaller gate delays.  Figure 50 showing delays for EWR with the 7/25/12 scenario is a good 

illustration of this pattern.  The total average delay per flight can be on the order of half as much as for the 

Baseline case, as in this example. In the Baseline case, most of the delay as per the schedule is allocated 

to the gate, not to taxi-out; taxi-out delay results from traffic interactions on the airport surface. The 

scheduling in the other probabilistic cases schedulers is producing more closely-packed schedules with 

smaller inter-aircraft spacing values, such that departures aircraft are delayed on the airport surface as 

they encounter congestion. In the Baseline case, the inter-flight spacing implicit in the schedule is 

sufficiently great to minimize occurrences of traffic congestion on the airport surface. The trade-off is 

that, in general, the resulting average flight delays are greater with the baseline scheduler than with the 

other schedulers. The ability of the PROCAST probabilistic scheduler to generate multiple, alternative 

runway sequences of flights, as well as the capability to accept a less accurate schedule, likely plays a role 

in this dramatic difference. 

The outlier in this pattern is the “Simple100” scheduler configuration—PROCAST scheduling using 100 

futures sampled from the simple Gaussian model of departure taxi time. The gate delays and total delays 

for this PROCAST configuration are less consistent, ranging from slightly more than the Simple10, 

Baseline Simple10 Simple100 BayesNet1 BayesNet10
BayesNet10

0

Taxi Delay 1.03 1.12 0.83 1.64 1.55 1.46

Gate Delay 17.95 16.22 21.34 13.61 15.84 15.05
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BayesNet1, BayesNet10 and BayesNet100 schedulers, as in most of the airports and traffic scenarios, to 

as much as or more than in the Baseline case (e.g. Figure 50, Figure 52). The Simple10 result is 

comparable to the BayesNet results.  And, the Simple100 result varies considerably, but is also similar to 

the BayesNet results.  The compact schedules of Simple10 can also be explained by effects (9) and (10).   

In comparing the results (within this pattern) of the three Bayesian network cases, BayesNet1, 

BayesNet10 and BayesNet100 of PROCAST scheduling using with 1, 10, and 100 futures sampled from 

the Bayesian network model of taxi time, we typically see a small rise in gate delays in going from 1 to 10 

futures, and a comparable small decrease when going from 10 futures to 100.  But, these changes are 

small.  It is difficult to discern a pattern in the small variations in taxi time in these three cases. In 

comparing them to the baseline, the fact that these BN runs are all similar to one another and dramatically 

different from the baseline, suggests that the important difference is in the mean of the predictions rather 

than the width.  In particular, the BayesNet1 case is exactly the same as the baseline, except that it is 

using the posterior mean prediction rather than a deterministic unimpeded taxi time.  Going to 10 or 100 

futures with down-selection seems to make a relatively small difference. Indeed, it may be that the 

sampling and down-selection method is indirectly accessing the mean of the posterior distributions which 

is implicit (approximately) in the samples. 

The exception to this pattern is the delay data for JFK airport with the 3/16/12 traffic scenario (Figure 52). 

In this data set, the baseline scheduler does not have particularly large total delays or gate delays, 

compared with other schedulers. And, the general pattern among the results for the non-baseline scheduler 

configurations is also different. In fact, the outsized gate delays and tiny taxi delays in this case are found 

in the Simple100 results. The scheduling methods produced similar delays, except for the Simple100 

scheduler which had large gate delays and very small taxi delays.  The best-performing scheduler in terms 

of overall delay, by a small amount, was the BayesNet1 scheduler. 

Averages across all three airports, are less interesting because delays at the different airports are not really 

comparable, or in a similar range. Thus, the cross-airport average tends to wash out details, and give 

unfair weight to the airport with largest delays. 

A deeper analysis and comparison of the characteristics of the departure schedule produced by each 

scheduler, including the inter-flight spacing and transit times inherent in each schedule, and the quantity 

of conflicts resolved by the SOSS CD&R functionality, might provide deeper insight into the results 

obtained from the simulations. 

7.3 Investigation of Statistically Best Flight Release Times 

Part of the Phase II research focused on improving PROCAST’s method to choose the “statistically-best” 

set of control actions (i.e., flight release times). This section summarizes that research, which was not 

incorporated into PROCAST due to time constraints. 

The BN models are used to generate a set of 100 futures. Each future contains a set of flight release times 

for the aircraft that are waiting at gates ready to depart.3 We need to find a set of “statistically-best” flight 

release times that represent the delay control actions of scheduling aircraft to satisfy capacity constraints. 

For this study, we used seven different methods to 1) rank order the different futures, 2) choose the best 

future, and then 3) select the flight release times given by that future. In order to rank order the futures, 

each method calculated some function (to be specified below) of the delay of each flight within each 

future, and then calculated the sum of the resulting values to yield the measure for that future. The futures 

were ranked ordered in ascending order of this measure. We first describe two metrics that we used to 

compare the seven different methods, and then describe the seven different methods. 

                                                      

3 For the remainder of this section, when we refer to flights, we are referring only to flights at the gate waiting to 

depart, which are the flights for which we need to figure out the best flight release times. 
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We used two metrics to evaluate the various methods for rank-ordering futures. The first metric is the sum 

of the actual delays4 over all flights in the top ranked future. The second metric involves first calculating 

the mean absolute difference between all pairs of futures’ flight delays for the first 2, 3… 100 futures, and 

then calculate the mean over all the numbers of futures. This metric is related to the spread in flight delays 

among the top 2, 3… 100 futures. The spread among the flight delays in the top few futures is a useful 

way to assess how “robust” the selected flight release times are---do the best futures tend to cluster in 

terms of flight delays? 

The following seven methods were used to calculate the delay used for each flight as part of the above 

metrics. For all of these, we will refer to the mean delay for a flight across all the futures as the mean and 

the standard deviation of the delay for a flight across all the futures as the standard deviation. 

1. Delay for each flight relative to the mean, but where delays less than the mean are set to zero 

rather than a negative number. The idea is to not excessively reward delays that are significantly 

less than the mean and possibly fail to penalize futures with some very high delay flights. 

2. Absolute value of the difference between the delay for each flight and the mean. This operates on 

the hypothesis that having delays close to the mean are likely to be more robust, so this method 

strongly penalizes delays that are far from the mean on either side. 

3. Absolute value of the flight’s delay minus the mean and divided by the standard deviation. The 

idea is that flights with a higher spread in delays across the futures should not have their 

reductions or increases in delays count as much as flights with a lower spread. 

4. If the flight delay is in the interval [mean – standard deviation, mean], then the delay is set to 

zero, otherwise the delay is the absolute value of the delay minus the mean. The idea here is to 

only reward significant reductions of flight delay below the mean. 

5. Delay for each flight minus the mean divided by the standard deviation. If a flight’s delay is less 

than zero, then set that flight’s delay to zero. 

6. Same as method 5, but where the score of the future is the mean of the square of the delays. 

7. Same as method 5, but where the score of the future is the mean of the logs of the delays. 

Table 15 gives the comparisons of all the methods in terms of the first metric, which is the sum of delays 

(in seconds) of all departing flights in the top-ranked future. If entry (i,j) is negative, then method i 

performed better than method j. 

Table 15: Comparisons of Methods Based on Metric 1--- Total Delay Of All Flights In The Top-ranked 

Future. 

METRIC 1 

 Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 

Method 1 0 -2121.9 -2086 -1735 78.156 -186.28 -4095.4 

Method 2 2121.9 0 35.867 386.92 2200 1935.6 -1973.5 

Method 3 2086 -35.867 0 351.06 2164.2 1899.7 -2009.4 

Method 4 1735 -386.92 -351.06 0 1813.1 1548.7 -2360.4 

Method 5 -78.156 -2200 -2164.2 -1813.1 0 -264.43 -4173.5 

                                                      

4 Not the function of the delays that are calculated as part of the seven methods. 
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Method 6 186.28 -1935.6 -1899.7 -1548.7 264.43 0 -3909.1 

Method 7 4095.4 1973.5 2009.4 2360.4 4173.5 3909.1 0 

 

Table 16 shows comparisons of all the methods in terms of the second metric, which is the mean absolute 

difference (in seconds) between all pairs of futures’ flight delays, calculated for the first 2, 3, …, 100 

futures. If entry (i,j) is negative, then method i has less spread in its flight delays than method j. 

Table 16: Comparisons of Methods Based on Metric 2--- Mean Absolute Difference Between All Pairs of 

Futures’ Flight Delays. 

METRIC 2 

 Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 

Method 1 0 -1.7699 -1.9283 -1.3707 0.021025 0.017103 -3.3079 

Method 2 1.7699 0 -0.15837 0.39917 1.7909 1.787 -1.538 

Method 3 1.9283 0.15837 0 0.55754 1.9493 1.9454 -1.3796 

Method 4 1.3707 -0.39917 -0.55754 0 1.3917 1.3878 -1.9372 

Method 5 -0.021025 -1.7909 -1.9493 -1.3917 0 -0.003922 -3.3289 

Method 6 -0.017103 -1.787 -1.9454 -1.3878 0.003922 0 -3.325 

Method 7 3.3079 1.538 1.3796 1.9372 3.3289 3.325 0 

 

Table 17 gives the total delay of the all flights in the futures chosen by the new methods relative to the 

future chosen by the down selection method. The table compares the methods relative to down selection 

method on total delay (in seconds) of all flights in future chosen by the method relative to the future 

chosen by the down selection method. A negative value indicates that the new method has lower total 

delay than the down selection method 

Table 17: Comparisons of the total delay of all the flights in the futures chosen by the new method relative to 

the futures chosen by the down selection method. 

METRIC 3 

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6 Method 7 

-1850.4 271.46 235.6 -115.46 -1928.6 -1664.2 2245 

 

Overall, Method 5 (highlighted in blue) has shown itself to be the best method, as it outperforms the 

down selection method and the other attempted methods. It remains for future work to investigate other 

possible methods. In particular, further analysis is needed to find better ways to assess the robustness of a 
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set of flight delays---how much can the system be perturbed and still allow the chosen set of flight delays, 

or values very close to them, to still be implemented? 

8 Considerations and Future Research 

This section presents considerations regarding probabilistic transit time and its incorporation into traffic 

scheduling, considerations in traffic scheduling, and considerations in future evaluations of PROCAST 

scheduling (Section 8.1). This section presents recommendations for future research, within the areas of 

multi-airport scheduling, Bayesian network modeling and application to traffic prediction and planning, 

and SOSS enhancements to improve modeling of arrival-departure interactions and multi-airport traffic 

(Section 8.2). 

8.1 Considerations 

Our experiments highlight a number of important considerations concerning PROCAST scheduler design 

and its evaluation which are described here. They include traffic control considerations, BN-based transit 

time prediction for traffic control, and scheduling. 

8.1.1 Estimated Congestion Factors in Taxi Time Prediction 

Predicting the 4D trajectories of departures from the BN models of taxi times introduced a couple key 

error sources in the PROCAST scheduling by 1) having to estimate the future congestion states of points 

on the aircraft surface, and 2) PROCAST scheduling inherently altering the congestion states of these 

points by altering the predicted 4D trajectories of aircraft to meet capacity limits and delay feedback 

requirements.  

Regarding the first point, our Bayesian network models of departure taxi time accounted for traffic 

congestion at certain points on the airport surface as factors influencing the taxi time. For training of the 

BN models, such congestion states could be unambiguously determined from the known trajectories of 

the flights in the training data. However, to predict the taxi time of a departure for generating a future for 

scheduling required predicting or estimating the traffic congestion states at those points. This depended 

on the taxi times of the other current and pending aircraft and the pushback times of the pending aircraft, 

which are not known at the current time of prediction. We therefore used an approximation to the future 

trajectories of the flights to estimate the congestion state feature —an approximation that is necessarily 

cruder than the trajectory predictions that we have not yet made. To compute the values of the congestion 

point features of the BN model, we used the unimpeded taxi time of taxiing departures to estimate the 

future airport state. In addition, we assumed departures at the gate pushed back at the earliest time when 

they could push back, both for estimating node arrival times, and for estimating contextual traffic levels. 

Regarding the second point, the PROCAST scheduling is inherently changing the congestion states of the 

congestion points by planning 4D trajectories of aircraft to comply with capacity constraints of the 

airport’s runways and terminal airspace fixes. The transit time process of a departure flight after 

scheduling would likely be described by a different probability distribution than the posterior distribution 

used to predict the departure’s transit time for scheduling. Developing an appropriate method, perhaps an 

iterative transit time estimation and scheduling approach, to account for the influence of scheduling in the 

initial transit time estimation, remains to be explored. Criteria to guarantee convergence for such an 

iterative approach would have to be specified. 

Nevertheless, the Bayesian network prediction of the taxi time (the mean) has the potential to be more 

accurate than the deterministic unimpeded transit time in accounting for the particular traffic conditions at 

the time of the flight.  While BN models may predict times of arrival to scheduling points which greater 

or lesser than a mean value, unimpeded transit times will tend to predict times of arrival to scheduling 

points which are too early, by not accounting for the impact of other traffic which can cause delays. 
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8.1.2 Traffic Scheduling 

PROCAST scheduling with fixed, deterministic taxi time models will exhibit no permutations in the 

sequence of a given set of flights it schedules at the airport’s runways.  The combination of taxi-out time 

randomization and the down-selection process used in the PROCAST probabilistic scheduling admits 

more permutations of the sequence of the departing flights, and may be able to take advantage of this to 

make a more compact schedule. However, airport traffic performance resulting from the more compact 

schedule may exhibit greater variability in the face of taxi time fluctuations. 

Probabilistic scheduling may be allowing us to choose slightly more inaccurate schedules relative to the 

actual conditions, and this may have the effect of making the scheduling problem dramatically easier to 

solve.  We can think of this as an application of the Pareto principle [JMJ75], in which an 80% solution (a 

schedule that only approximately meets the constraints) is accomplished with 20% of the effort (imposing 

much smaller gate delays). The inaccuracy can be expected to appear as larger taxi delays. 

8.1.3 Traffic Control Modeling Approximations 

Schedule robustness versus throughput. Conflict situations among aircraft on the airport surface can 

result from the combination of 1) the dense traffic schedules observed to be generated by the PROCAST 

probabilistic scheduling and, 2) the uncertainties in the times of arrival of departures to the scheduling 

points due to taxi time variabilities. Such conflict situations are detected and resolved by airport traffic 

managers and controllers. Resolutions typically require holding one aircraft while letting the other pass, 

or rerouting aircraft along a different 3D route, either of which typically extends the taxi times of the 

aircraft. Our simulations did not capture or resolve conflicts between arrivals and departures, or between 

arrivals, at the airport runways. Therefore, our simulations may have generated artificially lower delay 

results with correspondingly higher capacity results than would otherwise be realized.  

Schedule stability. Successive iterations of traffic scheduling will likely alter, say, the scheduled runway 

times of arrivals and departures and associated pushback times of departures. Sensitivity of controllers, 

pilots, passengers and airlines to changes in these scheduled times, and time windows for freezing 

scheduled times, is important to consider in implementing a scheduling system. In our simulations, only 

additional delays to the time of release for a flight from a node (such as the gate) were allowed; the time 

of release could not be hastened. If the flight if it subsequently received a second time of release was is 

earlier than the first one, that second time was ignored. This was so, even if the second time is still in the 

future.  Thus, flights that had been scheduled (by being given a gate pushback time) could not be 

rescheduled to an earlier gate pushback, only to a later one. 

8.2 Future Research 

The two-year research effort produced a number of valuable PROCAST research products including 

SOSS airport terminal and surface models of JFK, EWR, and LGA, an integrated arrival and departure 

scheduling capability, and an evaluation framework for developing Bayesian Networks to 

probabilistically model and predict surface transit times (taxi times) for aircraft. There are a number of 

areas of interest that warrant future research including the following. 

8.2.1 Multi-Airport Scheduling 

Future work on multi-airport scheduling includes enhancing the algorithms to improve the efficiency and 

realism of planned traffic, investigating methods for incorporating uncertainty information into traffic 

scheduling. Regarding improving the scheduling algorithms, heuristics and optimization features could be 

added to increase throughput, optimize arrivals with departures on shared runways, and to ensure fairness 

in scheduling multi-airport traffic to shared resources. In addition, investigating schedule stability 

requirements for multi-airport arrival and departure scheduling, and the development of stateless 

schedulers that do not require persistence of scheduling data between successive iterations. In addition, 

enhancing the modeling with spatial freeze horizons and planning time horizons, and realistic details of 
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metering systems, would promote more immediate transition to an operational tool. Regarding methods to 

incorporate prediction of taxi time distributions into scheduling, previous research has explored the trade-

off between throughput and controller workload in accounting for time of arrival uncertainty in 

scheduling. Exploring the trade-off between throughput and number of conflicts to specify inter-flight 

spacing buffers to account for the dynamically-changing transit time uncertainty is an area of future 

research; explicit incorporation of time of arrival uncertainty (derived from transit time uncertainty) in 

scheduling times of arrival is one approach. Lastly, further work is required to study alternative methods 

for evaluating futures and down-selecting.  In particular, machine learning may enable the scheduler to 

understand and respond to the structure in the set of futures, such as clusters. 

8.2.2 Bayesian Networks 

Future work on the Bayesian networks includes evaluating alternative BN modeling and training 

methods, exploring real-time training of the BN models, and more comprehensively evaluating the 

appropriate implementation of BN models with scheduling. Regarding BN modeling and training 

methods, investigating Bayesian networks to use a hybrid of discrete and continuous variables (rather 

than the purely discrete or continuous implementations in this project) would support optimizing the 

modeling of individual categorical and continuous factors in the BN model. Evaluating other BN learning 

and prediction methods to model aircraft taxi time might identify modeling methods which are more 

efficient, robust and/or accurate for training and implementation. Regarding real-time training of BN 

models, we consider that the character of taxi time, the factors influencing it, and its dependence on those 

factors may change with various exogenous variables. Further research could explore the online update of 

trained models (using historical batch data) by surveillance and other data feedback from previous 

scheduling cycles. In addition, further research is needed to explore the holistic integration of BN taxi 

time modeling with traffic scheduling. Schedules are derived from predictions of taxi times, but taxi times 

(and their predictions) are affected by scheduling.  It would be interesting to study a more holistic 

approach in which prediction and scheduling are combined, either directly, or through iteration. 

Also, in contrast to optimizing the traffic schedule for every cycle, research could explore performing a 

global optimization for all (or a large number) scheduling cycles together. The objective will be to 

maximize the total discounted reward over all scheduling cycles. As the scheduling actions for one-cycle 

affects the scheduling decisions for the subsequent cycles, a global optimization approach is likely to 

perform better. We can formulate this optimal decision making problem as a Markov Decision Process 

(MDP) and solve it using Reinforcement Learning (RL) algorithms. Planning algorithms can be an 

alternative solution to the same problem. 

8.2.3 SOSS Enhancements 

To support future research, enhancements to the SOSS software would greatly improve our simulation 

test environment. One key area is the simulation and management of airborne aircraft. SOSS was 

designed as an exclusively surface simulation tool; therefore simulation of the entire TRACON 

environment requires revisiting the handling of airborne aircraft. While some simplified airborne 

functionality was added to SOSS under the Phase I work, this functionality is inadequate for the coupled 

airport interactions modeled in Phase II.  SOSS functionality could be expanded to include the spacing 

and de-confliction of arrivals, and arrivals with departures, and for delaying arrivals in SOSS. To capture 

the coupled nature of multiple airports operating in the Metroplex, a separate airborne trajectory modeler 

component would be ideal. This component would handle airborne aircraft from the runways to the fixes, 

and would have a rudimentary ability to emulate approach control and vector, space, and delay aircraft.  

Ideally, some portion of delay could be handled in the TRACON so that not all delay would need to be 

fed back to the arrival fixes.  The trajectory modeler would be able to space arrivals appropriately for the 

runways and insure departure fix metering was performed.  Figure 56 shows a hypothetical architecture.   

The airborne simulator would operate as a separate process and would manage socket communications 

between the SOSS processes. The airborne simulator would take charge of aircraft once they became 
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airborne and transfer them to SOSS once they landed.  The airborne simulator would manage the 

communications between the external scheduler. Prior modifications to individual SOSSs to enable 

airborne operations would be suspended. Time synchronization between the processes would now be 

critical, so SOSS would need to be modified to operate on a time mechanism governed by the airborne 

simulator.  

 

Figure 56. Hypothetical Architecture Involving an Airborne Simulator  
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11 Appendix A: SOSS Adaptation Data 

As in Phase I, we simulate the airport surface and terminal airspace traffic in order to evaluate the 

effectiveness of the PROCAST solution architecture using BNs to model taxi-times. We use a NASA 

airport surface traffic simulation platform called Surface Operations Simulator and Scheduler (SOSS) for 

this purpose. SOSS is a fast-time simulation platform used to simulate airport surface operations and 

support rapid prototyping of surface scheduling algorithms. SOSS is designed to be used in conjunction 

with external scheduling components (e.g., PROCAST). When integrated with external scheduler(s), it is 

SOSS’s job to move aircraft on the surface according to the recommended schedule, and monitor and 

resolve separation violations and scheduling conformance. SOSS uses an underlying link-node airport 

model representing gates, ramps, spots, taxiways, crossings, and runways. Flight surface routes in SOSS 

are defined as ordered lists of nodes through the node/link network. SOSS uses a dynamic model to 

simulate the motion of aircraft along the airport surface routes. SOSS also has a tactical flight separation 

model which emulates tactical actions that pilots and controllers take to maintain safe separation between 

aircraft. Separation is handled differently for flights using the runway than for flights taxiing through the 

ramp, taxi, and queuing areas. SOSS requires a simulation traffic scenario consisting of scheduled flight 

times, routes, and runway configurations to conduct simulations. For detailed information about SOSS 

simulation capabilities, SOSS architecture, etc., see [RW12]. This appendix provides additional details on 

the runway configurations and adaptation data used to model JFK, EWR, and LGA airports in the Phase 

II effort. 
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11.1 JFK Runway Configurations and Surface Arrival and Departure Routes 

 

Figure 57. JFK Phase I and Phase II Runway Configuration Showing Arrivals in Red and Departures in 

Green (31L, 31R|31L) 



Novel, Multidisciplinary Global Optimization Under Uncertainty, Phase II Final Report  Version 1 

Architecture Technology Corporation   October 31, 2016 

87 

 

11.2 Surface Arrival and Departure Routes 

 

Figure 58. Illustration of JFK Surface Arrival Routes 
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Figure 59. JFK Surface Arrival Routes in SOSS 
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Figure 60. Illustration of JFK Surface Departure Routes 
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Figure 61. JFK Surface Departure Routes in SOSS 
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11.3 EWR Runway Configuration and Surface Arrival and Departure Routes 

 

Figure 62. EWR Phase II Runway Configuration Showing Arrivals in Red and Departures in Green 

(04R|04L) 
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Figure 63. Illustration of EWR Surface Arrival Routes 
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Figure 64. EWR Surface Arrival Routes in SOSS 
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Figure 65. Illustration of EWR Surface Departure Routes 
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11.3.1 SME Review of EWR Surface Departure Routes 

In order to better understand real-world influences that affect taxi-time for the surface routes modeled at 

EWR, we reviewed the illustration of the surface departure routes with our N90 SME’s Ralph Tamburro 

and Bill Cotton. They offered the following comments on the taxi departure routes depicted in the 

illustration: 

 EWR tends to use Bravo for Runway 4L departures. 

 Terminal C departures enter taxiway Alpha at Romeo  

 4’s are not a bad configuration because Terminal C is busiest 

 The interactions typically occur near kilo (arrival/departure crossings) and Juliet 

 Kilo would likely get the most runway crossings by arrival aircraft 

 During a heavy departure push, bunch several arrivals to get them across in a group (or a burst) 

 FedEx runway crossings are primarily on the south side of airport 

 United feeder (express) flights are in terminal A 

 Terminal B ramp operations are run by PANYNJ – primarily international, DAL is also terminal 

B – lower number of ops compared with Terminal C 

 Can use taxiways Alpha and Bravo together for sequencing departures to meet restrictions 

 Typical weather day do not put departures over the same fix back to back 

 Sometimes difficult at EWR due to concentrated demand over certain fixes (e.g. International 

push during evening) Internationals use a different sector in the departure facility, but a common 

departure fix. 

 Juliet and Kilo would likely be primary intersection/constraint points for this configuration. 

 May need to cross arrivals to prevent an arrival queue on Papa. 

 Arrivals come off 4R to Papa and then crossing at Echo and Gulf simultaneously. 

 UAL works to manage surface traffic with EWR tower (nothing official/software), but they work 

collaboratively with ATC to self-manage traffic. 
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Figure 66. EWR Surface Departure Routes in SOSS 
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11.4 LGA Runway Configuration and Surface Arrival and Departure Routes 

 

Figure 67. LGA Phase II Runway Configuration Showing Arrivals in Red and Departures in Green (31|04) 
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Figure 68. Illustration of LGA Surface Arrival Routes 
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Figure 69. LGA Surface Arrival Routes in SOSS 
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Figure 70. Illustration of LGA Surface Departure Routes 
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11.4.1 SME Review of LGA Surface Departure Routes 

In order to better understand real-world influences that affect taxi-time for the surface routes modeled at 

LGA, we reviewed the illustration of the surface departure routes with our N90 SME’s Ralph Tamburro 

and Bill Cotton. They offered the following comments on the taxi departure routes depicted in the 

illustration: 

 This is a generally favorable configuration because many arrivals can exit 31 before crossing 04. 

One in, one out for crossing runway configuration. 

 The alleyways between concourses in main terminal are used one way at a time because they are 

too narrow for passing. Taxiway Bravo has no parallel taxiway eliminating flexibility in 

sequencing takeoffs. 

 Most aircraft make it off before the intersection – cross 04 as needed. 10-12 is typical queue 

length – LGA is busy all day. Bravo is always busy because of constraints on departures as well 

as one in one out. 

 No gate hold at LGA. Narrow alleyways – one in one out. Gotta keep the alleys clear. So they end 

up with a large departure queue at the runway to keep gates open. All entrances to ramps are 

busy. All entryways to Alpha are busy. LGA is one of the more difficult airports for ground 

control.  Planned improvements in terminal and ramp area (future) may alleviate some of the 

ground movement problems and enable the use of gate holds. Main terminal is being redesigned 

and should provide better manageability of traffic. 

 

Figure 71. LGA Surface Departure Routes in SOSS 
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11.5 Runway Separation Requirements 

In SOSS, separation matrices are used to specify the minimum required temporal separation between two 

successive operations on the same runway or a pair of interacting runways in the simulation. For JFK, we 

use the runway interactions and runway separation matrices defined in [SS12]. For EWR and LGA we 

use runway separation matrices that correspond to the runway interactions from the individual runway 

modeling data developed during the NASA ACES B3 development effort [ACES05]. Note that because 

SOSS does not delay arrivals, no separation matrix is specified for arrival-arrival pairs. Following are the 

runway interactions for each airport along with the runway separation matrices as implemented in SOSS 

in the separations.txt file. 

11.5.1 JFK Runway Interactions and Runway Separation Matrices 

JFK 31L, 31R|31L 

DEP 31L – DEP31L 

ARR31L – DEP31L 

DEP31L - ARR31L 

 

# Airport JFK 

# 

# Departure After Same Runway RNAV Departure 

# Separation Matrix, separation[follower][leader] 

# column is leader and row is follower, WC enum is {H, L, B75, S} 

#  

 

DEP_AFTER_SAME_RNAV_DEP 31L 

dummy S L H B75 

S     60 60 120 120 

L     60 60 120 120 

H     60 60 90 90 

B75     60 60 90 90 

 

 

# Departure After Same Runway Non-RNAV Departure 

# Separation Matrix, separation[follower][leader] 

# column is leader and row is follower, WC enum is {H, L, B75, S} 

#  

 

DEP_AFTER_SAME_NONRNAV_DEP 31L 

dummy S L H B75 



Novel, Multidisciplinary Global Optimization Under Uncertainty, Phase II Final Report  Version 1 

Architecture Technology Corporation   October 31, 2016 

103 

 

S     60 60 120 120 

L     60 60 120 120 

H     60 60 90 90 

B75     60 60 90 90 

 

# Departure After Coupled Runway Departure 

# Separation Matrix 

# column is leader and row is follower, WC enum is {H, L, B75, S} 

 

# 31L and 31R are more than 4300 ft apart 

 

 

# Departure After Shared Runway Arrival 

# Operations Separation Matrix: separation[follower][leader] 

# column is leader and row is follower, WC enum is {H, L, B75, S} 

#  

 

DEP_AFTER_SHARED_ARR 31L 

dummy S   L   H   B75 

S     50 60 70 60 

L     50 60 70 60 

H     50 60 70 60 

B75     50 60 70 60 

 

# Departure Before Shared Runway Arrival 

# Operations Separation Matrix: separation[follower][leader] 

# x - departure, y - arrival, WC enum is {H, L, B75, S} 

# 

 

DEP_BEFORE_SHARED_ARR 31L 

dummy S   L   H   B75 

S     40 40 40 40 

L     28 28 28 28 

H     24 24 24 24 

B75     28 28 28 28 
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11.5.2 EWR Runway Interactions and Runway Separation Matrices 

EWR 4R|4L 

ARR 04R – ARR 04R Table 23.1 Same Runway (Reduced Separation) 

DEP 04L – DEP 04L Table 1.1 Same Runway 

DEP 04L – ARR 04R Table 2.1 RWY Inter Parallel 

ARR 04R – DEP 04L Table 2.1 RWY Inter Parallel 

 

# Airport EWR 

# 

# Departure After Same Runway RNAV Departure 

# Separation Matrix, separation[follower][leader] 

# column is leader and row is follower, WC enum is {H, L, B75, S} 

#  

 

DEP_AFTER_SAME_RNAV_DEP 04L 

dummy S L H B75 

S 40 46 120 120 

L 46 56 120 120 

H 50 60 90 90 

B75 46 56 120 120 

 

 

# Departure After Same Runway Non-RNAV Departure 

# Separation Matrix, separation[follower][leader] 

# column is leader and row is follower, WC enum is {H, L, B75, S} 

#  

 

DEP_AFTER_SAME_NONRNAV_DEP 04L 

dummy S L H B75 

S 40 46 120 120 

L 46 56 120 120 

H 50 60 90 90 

B75 46 56 120 120 
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11.5.3 LGA Runway Interactions and Runway Separation Matrices 

LGA 31|4 

DEP 04 – DEP 04 Table 1.1 Same Runway 

DEP 04 – ARR 31 Table 10.1 Crossing runways: Runway 1 4000-7000 ft., Runway 2 4000-7000 feet. 

ARR 31 – DEP 04 Table 10.1 Crossing runways: Runway 1 4000-7000 ft., Runway 2 4000-7000 feet. 

 

# Airport LGA  

# 

# Departure After Same Runway RNAV Departure 

# Separation Matrix, separation[follower][leader] 

# column is leader and row is follower, WC enum is {H, L, B75, S} 

#  

 

DEP_AFTER_SAME_RNAV_DEP 04 

dummy S L H B75 

S 40 46 120 120 

L 46 56 120 120 

H 50 60 90 90 

B75 46 56 120 120 

 

# Departure After Same Runway Non-RNAV Departure 

# Separation Matrix, separation[follower][leader] 

# column is leader and row is follower, WC enum is {H, L, B75, S} 

#  

 

DEP_AFTER_SAME_NONRNAV_DEP 04 

dummy S L H B75 

S 40 46 120 120 

L 46 56 120 120 

H 50 60 90 90 

B75 46 56 120 120 

 


