
NASA/TM–2013–Seedling Phase 1 Final Report

Adaptive Shape Parameterization
for Aerodynamic Design

George R. Anderson

Stanford University, Stanford, CA

Michael J. Aftosmis

NASA Ames, NASA Advanced Supercomputing Division, Mo↵ett Field, CA

September 2013

NASA STI Program . . . in Profile

Since its founding, NASA has been
dedicated to the advancement of
aeronautics and space science. The
NASA scientific and technical
information (STI) program plays a key
part in helping NASA maintain this
important role.

The NASA STI Program operates
under the auspices of the Agency Chief
Information O�cer. It collects,
organizes, provides for archiving, and
disseminates NASA’s STI. The NASA
STI Program provides access to the
NASA Aeronautics and Space
Database and its public interface, the
NASA Technical Report Server, thus
providing one of the largest collection
of aeronautical and space science STI
in the world. Results are published in
both non-NASA channels and by
NASA in the NASA STI Report Series,
which includes the following report
types:

• TECHNICAL PUBLICATION.
Reports of completed research or a
major significant phase of research
that present the results of NASA
programs and include extensive data
or theoretical analysis. Includes
compilations of significant scientific
and technical data and information
deemed to be of continuing reference
value. NASA counterpart of
peer-reviewed formal professional
papers, but having less stringent
limitations on manuscript length and
extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that
are preliminary or of specialized
interest, e.g., quick release reports,
working papers, and bibliographies
that contain minimal annotation.
Does not contain extensive analysis.

• CONTRACTOR REPORT.
Scientific and technical findings by
NASA-sponsored contractors and
grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings
sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION.
Scientific, technical, or historical
information from NASA programs,
projects, and missions, often
concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.
English- language translations of
foreign scientific and technical
material pertinent to NASA’s
mission.

Specialized services also include
creating custom thesauri, building
customized databases, and organizing
and publishing research results.

For more information about the NASA
STI Program, see the following:

• Access the NASA STI program home
page at http://www.sti.nasa.gov

• E-mail your question via the Internet
to help@sti.nasa.gov

• Fax your question to the NASA STI
Help Desk at 443-757-5803

• Phone the NASA STI Help Desk at
443-757-5802

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace
Information
7115 Standard Drive
Hanover, MD 21076–1320

NASA/TM–2013–Seedling Phase 1 Final Report

Adaptive Shape Parameterization
for Aerodynamic Design

George R. Anderson

Stanford University, Stanford, CA

Michael J. Aftosmis

NASA Ames, NASA Advanced Supercomputing Division, Mo↵ett Field, CA

National Aeronautics and
Space Administration

Ames Research Center
Mo↵ett Field, CA 94035

September 2013

Acknowledgments

Funding for this project was fully provided by a NASA ARMD Seedling Fund grant.
The authors also thank Marian Nemec for many helpful discussions and for his
development of the static-parameterization design framework used in this study.

The use of trademarks or names of manufacturers in this report is for accurate reporting and
does not constitute an o�cal endorsement, either expressed or implied, of such products or
manufacturers by the National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

Abstract

This report concerns research performed in fulfillment of Phase 1 of an
ongoing NASA Seedling Fund grant. The overall goal is to develop an
aerodynamic shape optimization framework that supports automated
shape parameterization. The four objectives for the work were to mature
a constraint-based deformation technique, to develop the basic frame-
work necessary to perform automated parameter refinement, to deter-
mine an importance indicator that prioritizes candidate design variables,
and to develop an e�cient refinement strategy. All of these objectives
have been met to the degree appropriate for Phase 1. We discuss each
in detail in this report.

Nomenclature

P Vector of design variable definitions/locations
X Vector of design variable values
J Objective function
@J
@X Objective gradients to design variables
C Computational cost
� Ratio of cost of gradient computation to cost of PDE solution.
d Optimizer search direction
I Importance indicator
r Trigger reduction factor
w Averaging window

PDE Solution

↵ Angle of attack
M Discrete PDE mesh
Q Discrete PDE solution
S Discrete tesselated surface
M Mach number
 Adjoint solution

Subscripts

cand Candidate design variables
dv Design variables
grad Objective gradient computation
iter Design iteration
opt Optimization
ref Refinement

1

1 Introduction

Aerodynamic design is gradually transitioning from point analysis
towards simulation-guided shape optimization, which seeks to im-

prove an initial design, using numerical analysis to intelligently drive the
shape changes. The key to e↵ective aerospace design optimization is the
shape parameterization, the geometric design variables that control the
vehicle’s shape and govern the range of possible configurations. This
work addresses the pressing need for shape parameterization techniques
that give the designer more flexibility and control, while also o✏oading
and automating as much work as possible.

1.1 Traditional Shape Optimization

From the beginning, shape optimization has made great promises: faster
design improvement (in wall-clock time), more automation, reduced user-
in-the-loop time, and minimal bias while exploring unfamiliar designs.
Unfortunately, current approaches fall short of the mark in each of these
areas.

An aerospace designer’s task ought to be to “ask the right questions”,
which entails choosing an objective and imposing design constraints. In
most current approaches, however, the designer spends excessive time on
the mechanics of the tools: selecting shape design variables, establishing
robust bounds on them, and other tasks which are not directly relevant to
design. Despite the promise of reduced bias, it remains strongly present
in the designer’s choice of design variables. The optimizer can work
only within the range of reachable shapes. The design space may be
excessively restrictive (or excessively open-ended) and is highly unlikely
to include the optimal continuous shape.

User-supplied constraints

4 parameters

10 parameters

22 parameters

Parameter Refinement

Figure 1: Progressive shape parame-
terization

Regarding the promise of
accelerated design improvement,
current methods meet with mixed
success. While at first, the de-
sign can be quickly improved, the
static design space prevents fur-
ther improvement. When shape
parameters are chosen before de-
sign begins, they can restrict the
design space in irrelevant ways,
needlessly hindering the discov-
ery of optimal designs. A fixed
parameterization cannot adapt to
capitalize on new insights as they
emerge during design.

2

1.2 Variable Shape Control

Most current methods use a static design space that does not evolve
as the design progresses. If these parameters are too coarse, design
improvement is severely restricted. If they are too refined while far from
optimal, then navigation of the nonlinear design space is ine�cient. In
this work we examine the use of a variable design space that can be
adapted as necessary, as illustrated in Figure 1. In practice, this typically
means that a coarse parameterization is used when far from the optimal
design, and that the resolution is gradually increased when approaching
the optimum.

102

101

103

100 10020 40 60 80
Cost (equivalent number of flow solves)

Sh
ap

e
M

at
ch

in
g

O
bj

ec
tiv

e
Fixed

(14 DVs)

Fixed
(30 DVs)

Progressive
(14 → 30)

refinement

Figure 2: Objective convergence for static
vs. progressive parameterizations

The primary benefit of
a variable shape control ap-
proach is that the designer is
no longer burdened with pre-
dicting how many and which
design variables will be ap-
propriate for a particular de-
sign problem. It also radically
reduces user setup time, as
design variables are automat-
ically created and bounded.
Furthermore, it constitutes a
single hierarchical process that
progressively drives the shape
towards the true continuous
optimal shape, instead of an
approximation in an arbitrary
fixed design space.

Although our primary goal is to streamline and automate design
tools, using a variable approach is also motivated by a growing body of
evidence that substantial design acceleration can be achieved by using a
hierarchical parameterization approach.1–4 Figure 2 illustrates the po-
tential computational acceleration. Each curve shows the evolution of
the objective using a di↵erent parameterization technique (steeper slopes
indicate more e�cient optimization). Using the coarse 14-DV parame-
terization initially achieves the fastest design improvement, as the space
is simpler to navigate, but the improvement quickly bottoms out. The
finer parameterizations can reach superior designs, but do so ine�ciently
because of the large number of design variables.

In progressive parameterization we start with a coarse design space
that can be quickly evolved, and then add new degrees of freedom when
necessary. This captures the best of both worlds, allowing e�cient design
improvement early on, while still retaining the ability to ultimately reach
a superior design that is accessible only in more refined design spaces.

3

1.3 Constraint-Based Deformation

Using adaptive parameterization places greater emphasis on the structure
of the shape parameterization method. One key objective of this work
was to develop and mature a tool that allows design variables to be
placed anywhere, and automatically. Our approach is called constraint-

based deformation.
Geometric constraints are truly the only thing known a priori in de-

sign. Constraint-based deformation treats constraints exactly like design
variables, so that only shapes satisfying the geometric constraints are
considered during optimization. This view represents a fundamentally
di↵erent approach to shape parameterization that unifies the concepts of
design variables and geometric constraints. This di↵ers from the conven-
tional approach where constraints are an afterthought, enforced approx-
imately via penalty functions or by awkwardly linking design variables
together to preclude undesirable shape changes. This new technique
determines both shape parameters and constraints at design time and
guarantees exact satisfaction of geometric constraints. Flexibility can be
added to the model as the design evolves, enhancing its ability to achieve
the designers objective. Some examples of constraint-based deformation
are shown in Figure 3.

r1 h

b1

b2

r2

γ

θ

ctip

Λ
croot

Down the span

Top-downFront view

Airfoil sections

Figure 3: Parametric wingtip deformation using constraint-based deformation.

1.4 A New Role for the Adjoint

The second key enabling technology for our approach is the incorporation
of sensitivity information provided by the adjoint equations. Since its
introduction to the aerodynamic community 25 years ago,5 the adjoint
method has revolutionized gradient-based shape optimization, rendering
it computationally feasible to optimize on very large numbers of design

4

variables. The adjoint approach allows all of the objective gradients to
be computed for a fixed cost of roughly two PDE solutions, instead of
the 2N solutions required under a finite di↵erence formulation.

In this work, we use the adjoint solution for a novel purpose. The
adjoint in fact encodes much more information than traditional para-
metric shape optimization makes use of, and this information can be
extracted at trivial cost. If used correctly, it can accelerate the rate of
design improvement.

Specifically, we use the adjoint to compute gradients not only of
existing shape design variables, but also of potential design variables. We
can then determine whether the potential design variables would drive
the design forward more e↵ectively, and if so, inject them into the active
set of design variables. Di↵erent design problems may call for di↵erent
shape control. Our goal is to discover the necessary shape control in
the process of optimization. Thus we expand the traditional role of the
adjoint from e�ciently computing objective gradients to designing the

design space itself.

1.5 Organization

The following section provides an algorithm for optimization with adap-
tive shape parameterization. In Section 3 we discuss the shape param-
eterization methods used for this study. We then discuss a mixed mod-
eling/observational approach to cost-benefit analysis to assess the e�-
ciency of di↵erent refinement strategies. In Sections 6-8 we examine each
of the essential components of the refinement strategy in detail, drawing
conclusions from randomized numerical experiments.

2 Adaptive Parameterization Algorithm

2.1 Standard Shape Optimization Framework

Adjoint-based parametric shape optimization frameworks typically fol-
low the iterative loop outlined in Function 1. First, a discrete tesselated
surface S is generated by a geometry modeler or deformer, based on the
initial shape parameter values X. Next, the solution domain is meshed
and the PDE is solved (for our purposes, the fluid flow equations), which
enables evaluation of the objective function J (e.g. drag or sonic boom).
Next, the adjoint equations of the PDE are solved, which allows rapid
computation of the objective gradients @J

@X to each design variable. Fi-
nally a gradient-based optimizer determines an update to the design
variables X, and the loop is continued.

For this study, we use an existing adjoint-based aerodynamic design
framework6 that uses an embedded-boundary Cartesian mesh method
for inviscid flow solutions. We also leverage the framework’s adjoint for-
mulation for computing gradients to prioritize candidate design variables

5

Function 1: OptimizeStatic(P,X
0

, Stop(·))
Parametric Geometry Engine

PDE Solver Functions

Input: Shape parameters P with initial values X
0

,
stopping condition Stop(J , @J

@X)
Result: Optimized surface S, adjoint solution
repeat

S � GenerateSurface(P,X)
M � GeneratePDEMesh(S)
Q � SolvePDE(M)
J � ComputeObjective(Q,S)
 � SolveAdjoint(Q,M)
foreach P

i

, X
i

in P,X do
@S
@Xi
 � ComputeShapeDerivative(P

i

, X
i

)
@J
@Xi
 � ProjectGradient(, @S

@Xi
)

end

X � NextDesign(X, @J
@X) // Gradient-based optimizer

until Stop(J , @J
@X)

when refining the design space. Optimization can be handled with any
black-box gradient-based optimizer; for this study we use SNOPT.7

2.2 Parametric Geometry Generation

The functionGenerateSurface(·) represents an arbitrary geometry mod-
eler (e.g. a CAD engine or surface deformer) that generates a tesselated
surface from a set of design parameters. The design framework described
above interacts with arbitrary geometry modelers, using an XML-based
protocol for communication.6 The geometry parameterization compo-
nents are discussed in more detail in Section 3.

2.3 Adaptive Optimization

Feature/Constraint

Existing Parameter

Candidate Parameter

Refinement Indicator

1.5x growth
Top Bottom

L0

L1

L2

Figure 4: Prioritized candidates for
parameterization refinement

Function 1 gives the process for
optimizing in a static design space
defined by a fixed set of design
variables. Our adaptive optimiza-
tion algorithm invokes a series of
calls to this design framework,
refining the parameterization be-
tween each call. Algorithm 2
shows a basic strategy for opti-
mization with adaptive shape pa-
rameterization. Besides the call
to the standard design framework,

6

there are a four new functions related to parameterization refinement.
The first function, GetCandidateDesignV ariables(·) generates a list of
possible new shape parameters. This function depends on the particular
parameterization technique being used, and is discussed in more detail
in Section 3.

The remaining three adaptation functions are independent of the
geometry modeler. The Trigger(·) determines when to initiate the next
refinement level. ComputeImportanceIndicator(·) determines which of
the design variables are most important and builds a “priority queue”
of candidates as illustrated in Figure 4. Finally, SetPace(·) determines
how many of these candidates to add, e↵ectively governing the rate of
shape parameter growth. These three functions are discussed in detail
in Sections 6-8.

Algorithm 2: Adaptive Parameterization Optimization
Parametric Geometry Engine

Refinement Strategy

Input: Initial shape parameters P
0

with values X
0

Result: Optimized surface S
P � P

0

,X � X
0

repeat
X, � OptimizeStatic(P,X, T rigger())
P

cand

,X
cand

 � GetCandidateDesignV ariables(P,X)
foreach P

i

, X
i

in P
cand

,X
cand

do
I
i

 � ComputeImportanceIndicator(P
i

, X
i

,)
end
SortByIndicator(P,X, I)
n � SetPace(I)
P � P [P

cand

[1 . . . n]
X � X [X

cand

[1 . . . n]

until overall stopping condition met

2.4 Uniform Refinement

A uniform refinement strategy is a special simplified case of Algorithm 2,
where all candidate design variables are added, rendering the indicator
and pacing irrelevant. To implement a uniform refinement strategy, we
simply bypass the computation of indicators in Algorithm 2 and add all
of the new candidates. A uniform refinement strategy meets the goals of
automation and consistency with the continuous optimal solution, and
it is also easier to implement. However, it has e�ciency implications, as
the number of design variables will grow much faster than in an adaptive
scheme.

7

3 Shape Parameterization

Adaptive parameterization is theoretically compatible with constructive
modelers (e.g. CAD or in-house geometry tools) or discrete geometry de-
formers (e.g. FFD, bump functions, constraint-based deformation, etc.),
and we strive for modularity with respect to the shape parameterization.
To function with a standard design framework, a geometry modeler must
provide a list of available design variables with minimum and maximum
bounds, and subsequently generate surfaces on demand for any set of
parameter values requested by the optimizer.a

To function with an adaptive parameterization framework, the mod-
eler must additionally have systematic methods for

• Generating and bounding new candidate design variables.

• Transferring constraints between refinement levels.

The method for generating candidates need not be strictly hierarchical
(or “nested”), but it should at least allow substantial refinement depth.

Besides these strict requirements, several authors have discussed de-
sirable qualities for a shape parameterization technique, such as automa-
tion, consistency, smoothness, compactness, e↵ectiveness, robustness,
and intuitiveness.8–12 Using an adaptive approach places greater em-
phasis on the structure of the parameterization scheme, which can be
summarized in the following desirable characteristics:

1. Hierarchical organization of parameters.

2. Refinement can be localized to particular regions of the shape

3. Unlimited refinement depth

4. Exact shape preservation when transferring between levels.

Many geometry modelers that are satisfactory for fixed parameter
optimization do not have all these characteristics. For example, with a
few exceptions, most constructive modelers (such as CAD packages) do
not preserve the shape exactly when changing parameterizations, which
means ground (and thus time) would be lost when refining the design
space. Discrete geometry deformation techniques, on the other hand,
naturally preserve the shape exactly.

In the following sections we discuss the two naturally hierarchical
and shape-preserving parametric geometry deformation methods used in
this study.

aIdeally, shape derivatives are also provided, but this is not a strict necessity, as
shape derivatives can be computed automatically by finite di↵erencing.

8

3.1 Rigid Wing Section Transformation

For wing planform design, we use an analytic deformer that applies rigid
transformations to arbitrary spanwise stations and lofts the deformation
between the stations. Rigid transformations include translation (sweep
and span), rotation (twist and dihedral) and scaling (thickness-to-chord
ratio). For this study, we restrict the deformation to twisting only and
we linearly interpolate the twist between stations, a deliberate choice
that simplifies the randomized testing discussed in Section 5.1.

Candidate design variables are generated by subdividing the spanwise
stations. If there are N spanwise stations, we can generate N � 1 candi-
dates at the midpoints between adjacent sections, as shown in Function
3. However, we could also look “deeper” by generating 2i � 1 evenly
spaced candidates between each pair of adjacent stations. A yet more
advanced approach could allow uneven spacing, but we defer this until
a later study.

Function 3: GetCandidateDesignV ariables(·)
Input: Current shape parameters P with values X
Result: Candidate shape parameters P

cand

with values X
cand

P
cand

 � ;,X
cand

 � ;
SpatiallySortParameters(P,X)
foreach pair of adjacent parameters (P

i

, P
j

) in P do
P
new

 � midpoint of P
i

and P
j

X
new

 � Interpolate (X
i

, X
j

)
P

cand

 � P
cand

+ P
new

X
cand

 � X
cand

+X
new

end

3.2 Constraint-Based Deformation

In references13,14 we developed a constraint-based approach to shape
parameterization for arbitrary aerospace configurations. Geometric con-
straints are managed systematically, ensuring that they are satisfied at
every design iteration. The technique works on arbitrary 3D aerospace
configurations, as demonstrated in Figure 3, but for the purposes of this
study we use it to perform wing section design, as illustrated in Figure 1.
Generation of new candidates is handled similarly to the wing planform
parameterization, given in Function 3.

9

4 Designing an Adaptive Strategy

It is worth pausing for a moment to note that by simply using progres-
sive parameterization in any form, we have already met several of our
goals. Even a uniform refinement strategy without any notion of local-
ized adaptation is automated and has the ability to reach the continuous
solution. It also accelerates design improvement by avoiding excessively
fine parameterizations early in design.

The remainder of this study is focused on process e�ciency, which
requires much closer attention to the details of the refinement strategy.
Our goal is to find a strategy (consisting of a trigger, an importance
indicator, and rate of variable introduction) that maximizes the design
improvement�J relative to the cost of the optimization C

opt

. Naturally,
no single refinement strategy will be perfect for all design problems. We
are looking for the essential ingredients of a robust strategy that works
consistently and e�ciently over a broad spectrum of aerodynamic design
problems.

4.1 Measuring Design Improvement

The design improvement is simply the change in the objective function
�J . The rate of design improvement cannot be rigorously modeled. It
must be measured through numerical experiments, as it strongly depends
on the e�cacy of the current shape parameters at reducing the arbitrary
objective function (e.g. drag vs. sonic boom vs. shape matching).

4.2 Cost-Benefit Trade

The total cost of shape optimization on a static parameterization (or on
one level of a progressive parameterization) is

C
opt

= N
iter

C
iter

+ C
ref

(1)

where N
iter

is the number of design iterations, C
iter

is the cost per it-
eration, and C

ref

is the cost of refining the parameterization. In the
following sections, we model the costs C

iter

and C
ref

for typical aerody-
namic problems. While we expect that N

iter

⇠ O (N
dv

) when using a
quasi-Newton optimizer such as BFGS, we cannot accurately predict it
due to the nonlinearity of the design space. Our approach is therefore
to observe how N

iter

behaves statistically in numerical experiments.

4.2.1 Cost per Design Iteration, C
iter

One design iteration is comprised of three significant actions: evaluat-
ing the objective (typically by solving a PDE), computing adjoint so-
lution(s), and projecting the surface objective gradient into each of the
design variables. We will assume that there is only one adjoint solve

10

(i.e. one objective and no aerodynamic constraints) and that the cost
of the adjoint solution is equal to that of the flow solution, which is a
reasonable approximation in most cases. Then the cost C

iter

of a design
iteration is

C
iter

= 2C
PDE

+N
dv

C
grad

For simplicity, we assume perfect parallel e�ciency. We also as-
sume that the cost of a flow or adjoint solution remains roughly constant
throughout the optimization.b Then we can divide out the constant PDE
solution cost to obtain the non-dimensional cost per design iteration

C
iter

= 2 +N
dv

� (2)

where � =
Cgrad

CPDE
indicates the relative cost of a gradient projection to

a PDE solution. C
PDE

depends on the PDE solution fidelity (scaling
roughly linearly with the number of unknowns in the discrete solution
when using a multigrid solver). C

grad

depends on the speed of the geom-
etry modeler and the cost of a gradient projection. In many situations,
the PDE solution is at least an order of magnitude more expensive than
the geometry generation and gradient projection, so � ⌧ 1. Neverthe-
less, the second term in Equation 2 can still become significant when
there are large numbers of design variables.

4.2.2 Cost of Refining the Parameterization, C
ref

Function ComputeImportanceIndicator(·) in Algorithm 2 dominates
the cost of design space refinement. In Section 7, we show that this
process involves the projection of the adjoint solution onto the shape
sensitivities with respect to the design variable, which has a nondimen-
sional cost of roughly �, making the total refinement cost for all N

cand

candidates
C
ref

= N
cand

� (3)

Equation 3 highlights the (intuitive) cost tradeo↵. Considering more
candidate design variables naturally increases the chances of finding ef-
fective design variables, but it also linearly increases the overhead asso-
ciated with refinement.

4.2.3 Total Optimization Cost, C
opt

Substituting the cost models (Equations 2 and 3) into Equation 1, we
obtain a model for the total nondimensional cost of an optimization on
a fixed set of parameters:

C
opt

= N
iter

(2 +N
dv

�) +N
cand

� (4)

bThis would be inaccurate when using progressively refined flow meshes, where
coarse mesh solutions are used early in design and fine mesh solutions only near the
optimum.

11

By choosing a particular pacing strategy we are implicitly prescribing
N

dv

and N
cand

, leaving N
iter

to be determined experimentally.
Finally, our goal is to maximize the design improvement relative to

the cost, at every parameter refinement level:

�J
N

iter

(2 +N
dv

�) +N
cand

�
(5)

Equation 5 allows us to make the following general statements. For
relatively expensive PDE solutions (where � ⌧ 1), the most e�cient
strategy is the one that maximizes �J

Niter
. This suggests that considering

more candidates and carefully deciding which to add is time well-spent.
For relatively inexpensive PDE solutions (� 6⌧ 1), the most e�cient
strategy is the one that maximizes �J

NiterNdv+Ncand
. In this case, the

refinement overhead is more significant, as is the total number of design
variables.

5 Numerical Experiments

Our objective for the remainder of this study is to evaluate various ap-
proaches to each component of the refinement strategy (trigger, indicator
and pacing), drawing conclusions from numerical experiments. In most
previous studies on adaptive refinement, broad conclusions are drawn
from a handful of specific model problems, which may not be represen-
tative even of that particular type of problem (and much less of a broad
class of problems). Single cases like these are more likely to lead to con-
clusions that do not hold in general. In this work we examine large sets
of randomized cases to reduce the possibility of error. The goal is to draw
statistically significant conclusions about mean performance. While ran-
dom cases are not precisely representative of real design problems, they
do provide a notion of expected performance on aerodynamic problems.

5.1 Test Case

2

Baseline

Random Twist Stations

Initial generators

Target generators

22 24 26 28 30
2.4

2.6

2.8

3

3.2

3.4

3.6

Twist axis

θ

Figure 5: Example of a random set of
twist stations

Our test problem is wing twist
matching. The geometry is the
swept and tapered transport wing
in Figure 5. Twisting is performed
by the rigid wing deformer de-
scribed in Section 3.1. The goal is
to add twist stations where neces-
sary and gradually match a known
target design. For each case we
randomize the initial and target
shapes, as well as the flight condi-
tions, in order to evaluate the abil-

12

ity of various refinement strategies to drive an arbitrary starting shape
to an arbitrary target shape.c

Twist stations are initially placed at the root and tip of the wing.
For each case, 8 more twist stations are then placed at randomly chosen
spanwise locations and randomly perturbed, which generates an initial
shape. This process is repeated to generate a target shape, using a dif-

ferent set of 8 random stations and perturbations. Because the spanwise
interpolation for the rigid deformer is linear, the target is exactly at-
tainable, but only if the adaptation process manages to capture all 16
parameters (8 each) used to generate the initial and target shapes.

5.2 Objective Functionals

We consider two inverse design functionals. The first is a geometric shape
matching functional defined as the sum of squared distances between
corresponding vertices:

J
geom

=
nvertsX

i=1

(v
i

� v⇤
i

)2 (6)

where v
i

are the current vertex coordinates and v⇤
i

are the corresponding
target vertex coordinates. Second, we consider an aerodynamic inverse
design functional defined as the squared deviation from a target pressure
profile:

J
aero

=
nvertsX

i=1

�
C
p

� C⇤
p

�
2

i

(7)

where the target pressure coe�cient C⇤
p

is specified at each vertex on the
discrete surface.

Both functionals have a minimum value of zero when the matching
is exact. The purely geometric functional is a much simpler objective, as
it eliminates the severe nonlinearities associated with the flow equations
and mesh discretization. The aerodynamic functional is more represen-
tative of realistic aerodynamic shape optimization problems. However,
it is much more expensive to compute, as it involves the solution of the
flow and adjoint equations.

5.3 Flight Conditions

For the aerodynamic objective function, in addition to randomizing the
parameterization, we also impose random subsonic flight conditions within
the Mach range 0.3  M  0.4 and angle of attack range 0�  ↵  2�.
The flow and adjoint solver settings are identical for all cases, including
generating the target pressure profiles.

cNaturally, arbitrary only within this class of shape parameterizations.

13

5.4 Statistics

Cost (equivalent number of flow solves)
N

or
m

al
iz

ed
 O

bj
ec

tiv
e

100

10-2

10-4

10-6

40 120 160800

Mean

1-σ

1 random case

Figure 6: Example of a randomized study with
computed statistics.

Each random study pro-
duces a series of indepen-
dent objective histories,
like the example shown in
Figure 6. Each thin line
corresponds to a di↵erent
design problem. The ob-
jective functions are in-
dependently normalized so
that each history starts at
a value of 1. We do this to
highlight the order of mag-
nitude decrease in the ob-
jective.

The x-axis indicates
the total computational
cost estimated by Equa-
tion 4. We compute the
mean (bold line) and standard deviation (shaded region) of the objec-
tive histories at regular cost intervals along the x-axisd. In all subsequent
plots, the individual objective histories are not shown, except when di-
rectly relevant.

6 Calibrating the Trigger

Cost (equivalent number of flow solves)

102

101

103

100 20 40 60 80

Sh
ap

e
M

at
ch

in
g

O
bj

ec
tiv

e 14 DVs

Late Trigger

Early Trigger

Refinement
to 30 DVs

Figure 7: E↵ects of triggering at dif-
ferent times.

The Trigger(·) function in Algo-
rithm 2 is a stopping-condition
that terminates the optimization
on the current set of design vari-
ables and initiates a parameter
refinement. The trigger is criti-
cal for e�ciency, as demonstrated
in Figure 7. The two branches
show the performance impact of
triggering at di↵erent times, for
the same setup used in Figure 2.
Over-optimizing on an immature
parameterization leads to sluggish
design improvement and is evi-
dently a poor investment of re-
sources. This observation has also

dFor attainable inverse design problems like this one, the statistics are computed
in log-space.

14

been made by other authors1 and similar ine�ciencies have been demon-
strated when over-optimizing on progressive PDE meshes.15

In their work on adaptive refinement, Han and Zingg2 advocate the
opposite approach of allowing the optimization to converge at each level,
in order to maximize design improvement under the current set of design
variables. In this work, however, our goal is rapid design improvement,
not to find a “minimal set” of design variables. As the cost of computing
gradients for additional design variables is quite low under an adjoint
formulatione, it makes more sense to terminate the optimization as soon
as the rate of design improvement starts to significantly taper o↵.

6.1 Detecting Tapering Design Improvement

The most direct approach to detecting diminishing design improvement
is to continuously monitor the cost-slope of the objective convergence,
given in Equation 5. The cost-slope must be evaluated only at major
search iterations, which is monotonically decreasing. Line searches are
generally non-monotone and cannot be interpreted as reasonable infor-
mation about slopes.

As shown in Function 4, we terminate the optimization when the
cost-slopef falls below some fraction of the maximum cost-slope that
has occurred so far. This normalization by the maximum cost-slope is
essential, as it accounts for the widely di↵ering scales that can be present
in di↵erent objective functions. (For example, a drag functional may be
O �

10�2

�
while a functional based on operating range may be O �

105
�
.)

Function 4: CostSlopeTrigger(·)
Input: Objective history J (d) w.r.t. search direction d,
window w, slope reduction factor r < 1
Result: True = “Terminate” or False = “Continue”

s = ComputeAveragedSlopes(J (d), w)

if
⇣

s[�1]

max(s)

⌘
< r then return True

else return False

Function 5 outlines an alternative approach: monitoring the objective
gradients to the design variables, ||@J

@X ||, which converge to zero as the
design approaches a local optimum. In convex regions of the design
space, the gradient roughly indicates distance from optimality. Better

eUnder a finite-di↵erence optimization framework (i.e. without the adjoint), the
cost of each extra gradient is two flow solutions. In that case, allowing more conver-
gence on fewer design variables might be more e�cient.

fFor attainable inverse design problems, we measure the cost-slope in log-space to
better reflect the problem.

15

yet, low gradient values typically precede flattening design improvement,
allowing pre-emptive termination.

Function 5: GradientTrigger(·)
Input: Objective gradient history @J

@Xi
(d) w.r.t. search direction d

and design variable i, window w, reduction factor r < 1
Result: True = “Terminate” or False = “Continue”

G(d) � ComputeAveragedGradientNorms(@J
@Xi

(d), w)

if
⇣
G[�1]

G[0]

< r
⌘
then return True

else return False

More aggressive triggering strategies could also be adopted, wherein
refinement is initiated well before the convergence begins to taper. This
could be done by refining after a predetermined number of search direc-
tions, perhaps by linking the number of search directions to the number
of design variables to reflect the expected rate of convergence. This ap-
proach, however, would require prior, problem-specific knowledge about
the rate of design improvement, which would defeat the purpose of a
general and automated optimization algorithm.

6.2 Handling Non-smoothness

Gradient Trigger
r = 10%
r = 1%
r = 0.1%

Cost (equivalent number of flow solves)

G
eo

m
et

ric
 O

bj
ec

tiv
e

(N
or

m
al

iz
ed

) 100

10-1

50 150 2001000

10-2

10-3

10-4

10-5

250

r = 5%

Slope Trigger

r = 10%
r = 25%

Figure 8: Performance of di↵erent
triggering strategies on the geometric
objective function. Each curve shows
mean behavior over 10 random trials.
(� = 0.01, 1.5⇥ growth)

The objective-cost slopes in Func-
tion 4 and the radients in Func-
tion 5 can be non-smooth, which
can cause false triggering. We al-
leviate this problem by using run-
ning averages over a small win-
dow. This helps prevent prema-
ture triggering, but it has the side
e↵ect of causing a lag the size of
the window, which can delay the
trigger for a few search directions.
Therefore the window should be
as small as possible. A window of
width 2 proved robust enough for
our studies so far.

6.3 Experimental Results

Figure 8 shows the performance
of the two triggering strategies
(Functions 4 and 5) on the geometric objective functional given by Equa-
tion 6. Three reduction factors are examined for each approach. There

16

are ten individual randomly generated cases (not shown), as explained
in Section 5. The same ten cases were used to test each triggering strat-
egy. The slope-based triggering strategies show very little sensitivity to
the reduction factor r in Function 4, indicating a fairly robust approach.
This is probably because the slope reduction tends to be sudden for the
geometric objective function. The gradient triggers are much more sen-
sitive to the reduction factor, but still seemed to perform reasonably well
for a good choice of r. Performance of the triggers on the aerodynamic
inverse design functional is currently under investigation.

6.4 False Triggers

Both triggers assume that diminishing design improvement indicates that
the optimizer has nearly fully exploited the design space, which should
now be expanded. But this assumption is not always correct: the op-
timizer could be simply navigating a particularly di�cult region of the
design space, after which faster design improvement would continue. It
is impossible to distinguish between these two cases without additional
information, such as prior knowledge that a superior design is attainable.
But an automated system cannot depend on problem-dependent a priori

information. We therefore err on the side of occasionally triggering early
in order to avoid the much more significant penalties associated with
consistently delaying refinement.

7 The Importance Indicator

The refinement indicator is an estimate of the relative importance of each
candidate design variable. Importance is di�cult to properly estimate,
because of the inherent nonlinearity of aerodynamic design.g The im-
portance estimate is necessarily only locally meaningful. Nevertheless,
as there is no globally valid importance indicator until the problem is
solved, local information is the best cue available.

The most significant information at hand is the local objective gradi-
ent to each candidate design variable @J

@X , which we can compute for neg-
ligible additional cost as we have already computed an adjoint solution
(see Section 4.2.2). Function 6 gives a method for computing the refine-
ment indicator that values high objective gradients. To compute gradi-
ents to candidate design variables, we leverage the ProjectGradient(·)
function, which is part of the static-parameterization design framework.

gStemming from nonlinearities in the geometry, in the shape deformation, in the
flow mesh discretization, and in the flow equations themselves.

17

Function 6: ComputeImportanceIndicator(P,X,)

Input: Candidate shape parameter P with value X,
adjoint solution
Result: Importance indicator I
@S
@X

 � ComputeShapeDerivative(P,X)
@J
@X

 � ProjectGradient(, @S
@X

)

I � || @J
@X

||

8 Pacing Introduction of New Design Variables

After computing the importance indicators of the candidate parameters
and sorting them, we have a prioritized list of design variables to add,
as illustrated in Figure 4. The SetPace(·) function in Algorithm 2 then
determines how many of the candidates to add to the optimization.

There are two factors that can slow down an optimization. If the
design space is insu�ciently flexible, optimization will quickly stagnate.
But if the design space has too much freedom, it is more di�cult to
navigate. Both situations cause ine�cient design improvement. Select-
ing a pacing involves finding an e↵ective balance between flexibility and
navigability.

At each refinement, growth in the number of design variables can be
specified either in absolute terms (e.g. “add 10 design variables”) or in
relative terms (“increase the number of design variables by 50%”). For
this initial study, we use preset growth ratios. We defer for future studies
the evaluation of more sophisticated strategies, such as performing a
cost-benefit estimation, or even removing some design variables from
the active set for e�ciency.

8.1 Experimental Results

Figure 9 compares the performance of various growth factors from 1.25�
2⇥ using the geometric objective functional (Equation 6). The results
clearly demonstrate that the growth rate has a critical impact on e�-
ciency. There is a factor of two di↵erence in performance between growth
rates of 1.25⇥ and 2⇥. There is also a clear trend favoring faster intro-
duction of design variables, with 2⇥ refinement performing the best. Be-
fore drawing sweeping conclusions, however, we note that at least three
factors could impact this result.

The first is that, although this is a 3D geometry, the shape parame-
terization is only 1D: the spanwise direction is the only dimension for re-
finement. In future work, we plan to consider 2D parameterizations that
combine spanwise refinement of planform design variables with stream-
wise refinement of airfoil design variables. In that case, the uniform
growth rate would be approximately 4⇥ instead of 2⇥.

18

Cost (equivalent number of flow solves)

G
eo

m
et

ric
 O

bj
ec

tiv
e

(N
or

m
al

iz
ed

) 100

10-1

50 150 2001000

10-2

10-3

10-4

10-5

Growth Rate
1.25x
1.5x
1.75x
2x

Figure 9: Performance of di↵erent growth rates on the geometric objective
function. Each curve shows mean behavior over 10 random trials. (� = 0.01,
slope-based trigger, r = 0.25)

Another possible factor is the relative simplicity of the geometric
objective functional, which allows rapid and reliable design improvement,
regardless of the number of design variables. We can simulate this by
assuming thatN

iter

in Equation 5 is proportional to the number of design
variables, which is the expected behavior for most problems. In this case,
the design improvement slope would penalize the introduction of more
design variables. A third consideration is that we are starting with a
minimal number of design variables (1 in this case).

On the other hand, if fast growth rates do indeed prove to be gen-
erally superior, then we are not limited even by uniform refinement. If
multiple candidate design variables are generated per interval (recall the
discussion in Section 3.1), then we can consider growth rates in excess
of 2⇥ (in excess of 4⇥ in 2D). Experimental studies to better elucidate
the tradeo↵ are still ongoing.

19

9 Summary and Conclusions

We discussed how a uniform refinement strategy is an excellent stepping-
stone towards fully adaptive parameterization. Uniform refinement pro-
vides automation, consistency and substantial design acceleration, and
implementation is simpler than a fully adaptive framework. To high-
light the savings in user time, consider the following changes to a typical
designer’s workflow in setting up an optimization:

1. Provide initial design.

2. Define objective function, constraints, PDE solver settings.

3. Provide
detailed
minimal

parameterization.

4. Set bounds on
all detailed

minimal set of

parameters

5. Repeat steps 3 and 4 iteratively to incorporate new insights.

What was previously a user -driven iterative loop of optimizations can
be handled automatically using an progressive parameterization process,
freeing the designer to focus on the essentials of posing the right problem.

We then focused on improving the process e�ciency by adopting an
adaptive approach to parameterization. Although studies are still ongo-
ing, the experimental results above enable us to make several statements
about the e�ciency of adaptive schemes:

• A trigger is essential for e�ciency, and earlier triggers outperform
late triggers (see Figure 7).

• The growth rate is also critical for e�ciency, and faster growth
rates tend to outperform slow ones (see Figure 9).

• In practice, we have found that it is more e�cient to start with a
moderate degree of shape control, rather than the bare minimum
number of design variables.h

We gave examples of using two di↵erent geometry modelers with
the adaptive framework. In Section 3 we discussed the development
necessary to integrate arbitrary geometry modelers with the framework:

• A system for generating candidate design variables

• A method for automatically setting bounds on parameters

hThis can still be handled automatically, by uniformly refining the parameterization
one or more times before beginning optimization.

20

9.1 Ongoing Research

Our next major goal is to apply a progressive approach to parameteriza-
tions of higher dimensionality, such as simultaneous design (and refine-
ment) of both planform design variables and airfoil design variables.

Regarding e�ciency, we plan to examine several modifications to the
strategy:

• Generating more candidate design variables by searching “deeper”,
using multiple levels of binary refinement.

• Trigger based on cost-benefit estimate.

• Importance indicator:

– Examining candidate parameterizations, instead of single can-
didate parameters.

– Using Hessian approximation to guide selection.

• Growth rate:

– Setting growth rate based on cost-benefit analysis

– Removing design parameters that have low continuing impor-
tance.

• Transferring Hessian approximation between refinement levels to
jumpstart next optimization.

In this study we exclusively focused on discrete parameter refinement,
analogous to h-refinement in PDE solvers. In future work, we hope
to examine a continuous approach, where we seek to optimally set the
location of each design parameter, paralleling the PDE solver technique
of adaptation through re-distribution or r -refinement.

References
1 Duvigneau, R., “Adaptive Parameterization using Free-Form Deformation for Aero-
dynamic Shape Optimization,” Tech. Rep. 5949, INRIA, 2006.

2 Han, X. and Zingg, D., “An adaptive geometry parametrization for aerodynamic
shape optimization,” 2013, pp. 1–23.

3 Olhofer, M., Jin, Y., and Sendho↵, B., “Adaptive Encoding for Aerodynamic Shape
Optimization using Evolution Strategies,” Congress on Evolutionary Computation,
Korea, 2001, pp. 576–583.

4 Hwang, J. T. and Martins, J. R. R. A., “A Dynamic Parametrization Scheme for
Shape Optimization Using Quasi-Newton Methods,” Vol. AIAA Paper 2012-0962,
Nashville, TN, January 2012.

5 Jameson, A., “Aerodynamic Design via Control Theory,” Journal of Scientific Com-
puting , Vol. 3, No. 3, 1988.

6 Nemec, M. and Aftosmis, M. J., “Parallel Adjoint Framework for Aerodynamic
Shape Optimization of Component-Based Geometry,” Vol. AIAA Paper 2011-1249,
Orlando, FL, January 2011.

21

7 Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP Algorithm for
Large-Scale Constrained Optimization,” SIAM Journal on Optimization, Vol. 12,
1997, pp. 979–1006.

8 Samareh, J. A., “A Survey of Shape Parameterization Techniques,”
CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity
and Structural Dynamics, Williamsburg, VA, June 1999.

9 Samareh, J. A., “Survey of Shape Parameterization Techniques for High-Fidelity
Multidisciplinary Shape Optimization,” AIAA Journal , Vol. 39, No. 5, May 2001.

10 Kulfan, B. M., “Universal Parametric Geometry Representation Method,” J. Air-
craft , Vol. 45, No. 1, January 2008, pp. 142–158.

11 Berkenstock, D. C. and Aftosmis, M. J., “Structure-Preserving Parametric Defor-
mation of Legacy Geometry,” 12th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, No. 2008-6026, Victoria, BC, September 2008.

12 Straathof, M. H., Shape Parameterization in Aircraft Design: A Novel Method,
Based on B-Splines, Ph.D. thesis, Technische Universiteit Delft, Netherlands,
February 2012.

13 Anderson, G. R., Aftosmis, M. J., and Nemec, M., “Constraint-Based Shape Pa-
rameterization for Aerodynamic Design,” 7th International Conference on Compu-
tational Fluid Dynamics, Big Island, Hawaii, July 2012.

14 Anderson, G. R., Aftosmis, M. J., and Nemec, M., “Parametric Deformation of
Discrete Geometry for Aerodynamic Shape Design,” Vol. AIAA Paper 2012-0965,
Nashville, TN, January 2012.

15 Nemec, M. and Aftosmis, M. J., “Output Error Estimates and Mesh Refinement in
Aerodynamic Shape Optimization,” Vol. AIAA Paper 2013-0865, Grapevine, TX,
January 2013.

22

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-09-2013

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Adaptive Shape Parameterization for Aerodynamic Design
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

George R. Anderson and Michael J. Aftosmis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Ames Research Center
Mo↵ett Field, CA 94035

8. PERFORMING ORGANIZATION
REPORT NUMBER

L–

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM–2013–Seedling Phase 1 Final Report

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 02
Availability: NASA CASI (443) 757-5802

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT

This report concerns research performed in fulfillment of Phase 1 of an ongoing NASA Seedling Fund grant. The overall goal
is to develop an aerodynamic shape optimization framework that supports automated shape parameterization. The four
objectives for the work were to mature a constraint-based deformation technique, to develop the basic framework necessary to
perform automated parameter refinement, to determine an importance indicator that prioritizes candidate design variables,
and to develop an e�cient refinement strategy. All of these objectives have been met to the degree appropriate for Phase 1.
We discuss each in detail in this report.

15. SUBJECT TERMS

design,optimization,parametric,adaptive,refinement

16. SECURITY CLASSIFICATION OF:
a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

