NASA Aeronautics Research Institute ...

Multichannel Sense-and
Radar for Small

Christopher Allen, F

Dept. of Electrical Engineering a
The Universi

NASA Aeronautics Rese:

FY12 LEAR



Acknowledgements

NASA Aeronautlcs Research Instltute

Funding sources

NASA — Leading Edge Aeronautical Research for NASA (LEARN)
Madison & Lila Self Graduate Fellowship, KU

Researchers

Dr. Christopher Allen (P1) — Electrical Engineering Profes
Dr. Mark Ewing — Aerospace Engineering Professor at |
Dr. Shahriar Keshmiri — Aerospace Engineering Profe

Graduate students
Lei Shi, Mike Zakharov, Francisco Florencio

On-campus technical suppor
Instrumentation Design Lab (IDL): C

November 13-15, 2013 NASA Aeronautics Research Mi



Outline

NASA Aeronautics Research nstitute

* The innovation

Problem statement / Solution requirements

e Technical approach

System overview / Theory / Implementation / Perfa

* Impact of the innovation if it is eventuz

* Results of the LEARN Phase | effc
Accomplishments / Findings / Schedule

e Distribution/Disseminatio
324 DASC (Digital Avionics Syste

* Next steps

November 13-15, 2013 NASA Aeronautics Resea



The innovation
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e Problem statement

Small unmanned aerial vehicles (UAVs) may have a bright future in the
commercial and industrial service sector.

* Pipeline surveillance, agricultural surveys, road traffic monitoring

Unacceptable risks result from the UAV’s of lack situation awa

* Hazard to both ground-based and
airborne assets.

e August 17, 2011 collision between
U.S. Air Force C-130 cargo plane and
an RQ-7 Shadow UAV over Afghanistan.

lsinitiion] CONCERNS OVER DRONE SAFETY GROW
roon 1 Drone collides with cargo plane in Afghanistan

Fall classes to start in tornado-ravaged Joplin

Integration into the NAS requires compatibi
(e.g., transponder-based collision avoidanc
cooperative objects (e.g., towers, ba
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The innovation
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e Solution requirements
Using programmable radar-ready integrated circuits, provide small UAVs
with situation awareness by remotely sensing nearby objects and
reporting their positions and closing rates to on-board guidance system.

Platform — 40%-scale Yak-54 RC aircraft
Key specifications
wingspan 3.1 m; length 3.1 m; payload 4 kg;
empty weight 18.1 kg ; cruise speed 36 m/s

Sensor requirements (from AE analysis*)
Key requirements
detection range 300 to 800 m; i
range accuracy 10 m; range-rate resolution 1 m/s
Doppler accuracy 10 Hz; update rate 10 Hz;

field of view 360° in azimuth, £15° in elevation; angular accurz

* Stastny TJ; Garcia G; Keshmiri S; “Collision and Obstacle Avoidance in Unmanned Aerial Systems Us
Potential Field Navigation and Nonlinear Model Predictive Control,” ASME Journal of Dynamic S

Control, Under Review, July 2013.
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Technical approach
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e System overview

— Microwave radar provides all-weather, day/night detection and
ranging capability of non-cooperative objects.

— Frequency-modulated continuous-wave (FMCW) operation reduces
transmit power requirements for measurement of range and radial
velocities (via Doppler processing).

— Multichannel system enables relative position knowledge in 3-D.

Phase | scope

Proof-of-concept demonstration aboard
Cessna-172 for performance evaluation
using 40% Yak-54 as intruder aircraft. -~~~

& /

-

Phase Il scope _—

Miniaturized version for flight testing\\..,~
on 40% Yak-54.
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 |mplementation — radar block diagram

— Radar-ready ICs: FMCW synthesizer & multichannel ADC
— FPGA

— RF subassembly é @
— Antenna arrays T M"j
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 Implementation — radar-ready subsystems
FMCW synthesizer

Analog Devices ADF4158

» FMCW signal generation

» Center frequency: 1.445 GHz
» Bandwidth: 15 MHz

» Modified evaluation board

VCO input with snubber circuit
November 13-15, 2013 NASA Aeronautics Research Mission Directorate FY12 LEARN Phase | Technical
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 Implementation — radar-ready subsystems
multichannel ADC with analog preprocessing

Analog Devices AD8283
» Custom PC board developed -
» Up to 6 multiplexed analog channels__‘ s

» Integrated analog signal conditioning'" e
via programmable LNA, PGA, AAF

» Operated at 4 MSa/s per channel rate

=8, 6 238 5 &
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 Implementation — FPG
field-programmable gate array

Xilinx Spartan 6

» Data windowing

» Radar timing and synchronization
» 1-D FFT (eventually 2-D FFT)

» Target detection

> Client communication
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RF subassembly

» One transmit channel

» Transmit power ~ 0.5 W

» Five receive channels

» Receiver noise figure 3.5 dB
» Receiver gain 64 dB
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e Implementation — antenna arrays

Two receive antenna arrays '
» Custom designs

» 3-element monopole for azimuth
» 2-element dipole for elevation

One COTS transmit antenna
> Pasternack PE51057
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 Performance — lab testing setup (loopback)
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 Performance — FPGA processing description

2-D FFT process

Fast-time
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Window

Hanning
Window
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e Performance — FPGA processing example results
3-D graphic output

Loopback setup with leakage using 800-m fiber delay line (584 m range)

Input signal power -112 dBm, 500-Hz double-sideband modulation,

,,,,,,,,,,, Emulated target signal
el 108 dB power

..... "512:7 Hz Doppler
.305:9 kHz heat freq

Noise floor PR N ST i L e, : ol
) et o, 5 -200
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5 #00
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Technical approach
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e Performance — FPGA processing example results
analysis of output
For the case shown, the following can be determined.
Predicted beat frequency = 305.6 kHz
Measured beat frequency = 305.9 kHz
Emulated target range of 584 m validated

Received signal power =-112 dBm

2-D FFT signal power = 108 dB; Noise power = 85 dB
Signal-to-noise ratio (SNR) = 23 dB

If a 10-dB SNR is required for target detection,
then the minimum detectable signal is -125 dBm

Theory says -125 dBm corresponds to the signal power received from a target
with an RCS of 1 m? at a range of 430 m

A target with a larger RCS would be detectable at a greater range.
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Technical approach

 Performance — antenna array analysis
measured and theory

Inversion of signals from antenna array into angle-of-arrival experimentall
verified from data measured in anechoic chamber.

Results confirm inversion algorithm.
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Impact of the innovation
if it is eventually implemented
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e Sensor represents technology “building block” for assessing
the capabilities and limitations of this class of sense-and-
avoid radar — a critical step for UAS integration into the
National Airspace System.

e With a flight director, this sensor will permit UAS researchers
to focus on mission-specific goals (e.g., optimizing flight-
control models for the autopilot) when conducting flight
tests.
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@Y LEARN Phase | results (to date)

Accomplishments

» Development of ADC board, characterization, integ
into radar system.

» Antenna development, characterization, integ
Cessna aircraft.

» FPGA coding for implementing real-time
conditioning and FFT for flight tests.
Ongoing work to implement 2-D F
external computer involved).
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Findings
» Lab testing confirms simulations results.

» Techniques for accommodating significant Tx-to-Rx leakage
have been successfully demonstrated.

» Execution speed of FPGA code has been shown to be
compatible with the real-time processing requirements.

» Investigation shows system can be realized with as few as 3
(maybe 4) receive antennas (vs. 5 in demo system).

» Analysis of angular rate of change shows that only two
receive signals need to be processed simultaneously to
satisfy unambiguous az. and elev. angles to target (vs. 5 in
current demo).
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Schedule status

While all benchmarks have been met, the project is behind
schedule.

Flight tests were scheduled to begin in Q3
are now beginning is Q4.
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TRANSFORMING AIR TRANSPORTATION
A Safety and Efficiency Collaboration

Syracuse, NY, October 6-10, 2013

Conference sponsors include:

@ﬂﬂftﬁa < IEEE d.égé_é.

Advancing Techmology i Pl e
For Hinmuanity

Our paper (Multichannel sense-and-avoid radar for small UAVS)
was awarded best in session and
placed 3" place overall in the graduate paper competition
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From the challenges overcome and discoveries made in
Phase | a clearer vision for Phase Il is emerging.

RF subsystem miniaturization requires a custom printe
circuit assembly.

Reduction of the Tx-to-Rx leakage on the UAV re«
custom antenna design and analysis.

Migration to a higher microwave frequenc
to yield a physically smaller antenna sys
UAV’s size constraints.

Close coordination between the ra
is required henceforth.
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