NASA Aeronautics Mission Directorate FY11 Seedling Phase | Technical Seminar

NARI 1

Luminescence-Based Temperature Mapping
at Turbine Engine Temperatures Using

Breakthrough Cr-Doped GdAIO, Broadband
Luminescence

Principal Investigator: Jeffrey Eldridge (RHI)
Tim Bencic (RHI)
Dongming Zhu (RXD)

June 7, 2012



Objectives

*Develop luminescence-based temperature measurement
capability with major advantages over thermocouples and
pyrometry for turbine engine environment.
*Take advantage of breakthrough discovery of high temperature
ultra-bright luminescence by Cr-doped GdAIO,.
eTechnical approach: take advantage of ultra-bright
luminescence at high temperatures
*Develop optical thermometer for probing engine environment.

eDemonstrate 2D temperature gradient mapping using Cr-doped
GdAIO; coatings.
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Innovation

B

Breakthrough discovery of exceptional high temperature
retention of ultra-bright luminescence by Cr-doped
GdAIO,with orthorhombic perovskite crystal structure: Cr-
doped gadolinium aluminum perovskite (Cr:GAP).

*High crystal field in GAP suppresses thermal quenching of luminescence.
*Novel utilization of broadband spin-allowed emission extends
luminescence to shorter wavelengths where thermal radiation
background is reduced.

Enables luminescence-based temperature measurements in
highly radiant environments to 1200°C.

*Huge advance over state-of-the-art ultra-bright luminescence upper
limit of 600°C.

Turbine engine temperature measurements?
Now we’'re talking!
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Background

NAR

* Almost all thermographic phosphor temperature measurements use
luminescence from transition metal or rare earth dopants.

Transition metal (e.g., Cr3*) Rare earth (e.g., Dy3*)
3d transitions 4f transitions

Unshielded Shielding by 5s & 5p electrons
Strongly phonon & bonding Weakly phonon & bonding
coupled coupled

Very strong oscillator strengthv’ Very weak oscillator strength

by ~4 orders of magnitude

Strong thermal quenching Weak thermal quenchingv’
Cr:Al,O; performs up to 600°C Dy:YAG performs up to 1700°C
Short A emission not available Short A emission availablev’

R lines @~700 nm Dy3* @456 nm

e Turbine engine temperature measurements need best-of-both-worlds
performance of high intensity emission that persists above 1000°C.
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Progress to Date

NARI 1

Demonstrated temperature measurement capability of
Cr:GAP luminescence.

*Successful development of optical thermometer using
Cr:GAP-coated sapphire lightpipes.

*Coatings developed for 2D temperature mapping.

ePatent application, conference presentation, and article
submitted for conference proceedings.
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Demonstrating Temperature Measurement Capability

Time-Averaged Luminescence Emission from Cr(0.2%):GAP Puck
| Temperature Dependence
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Demonstrating Temperature Measurement Capability
NA-*\“ Time-Resolved Decay of Luminescence Emission from Cr(0.2%):GAP Puck
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sLogarithmic intensity scale shows uniform decay rate over full wavelength range at each T.
*Adequate signal for decay time determination at wavelengths as short as 570 nm at 1072°C.
*Subsequent luminescence decay measurements use bandpass filter @593 nm, FWHM = 40 nm
*Best compromise between signal intensity & reducing thermal radiation background.




Demonstrating Temperature Measurement Capability
Luminescence Decay Measurement Setup
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Demonstrating Temperature Measurement Capability
Luminescence Decay Curves from Cr:GAP Puck Using Bandpass Filter
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Decay Time (sec)
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Bandpass filter
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Optical Thermometer Demonstration
Setup
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Optical Thermometer Demonstration
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*Good agreement between decay curves from optical thermometer & Cr:GAP puck.

eIntrinsic luminescence from sapphire rod produces small upward deviation of thermometer decay curves.
*Easily corrected for temperature readings.
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Optical Thermometer Demonstration

Limits to Sapphire Fiber Performance
400 um diameter fiber at 975°C
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eIntrinsic luminescence from sapphire fiber overwhelms Cr:GAP luminescence.
eInterfering luminescence from Cr impurities in sapphire fiber.

*Solution: Lower Cr impurity sapphire fibers or YAG fibers (where Cr impurities produce less luminescence).




Coatings for 2D Temperature Mapping

Electron Beam Physical Vapor Deposition Issues

|
Ingot in EB-PVD chamber showing Ingot removed from EB-PVD chamber

explosion debris from electron beam heating Showing thermal-shock fracture
< g—

 Deposition of Cr:GAP by EB-PVD at Penn State prov
be more challenging than anticipated.
— Top of Cr:GAP ingot explodes under electron beam heating.
— Ingot fractures due to thermal shock.
e Successful Resolution: Top section of ingot
then use extremely gentle electron bea



Coatings for 2D Temperature Mapping
Luminescence Decay Curves from 25 um Thick EB-PVD Cr:GAP Coatin
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Superb signal-to-noise from thin 25 pm thick coating confirms
retention of ultra-bright luminescence at high temperatures.



Coatings for 2D Temperature Mapping

Luminescence Decay Curves
25 um Thick EB-PVD Cr:GAP Coating vs. Cr:GAP Puck
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*More pronounced fast initial decay (t;) from EB-PVD coatings.
*Good agreement between long decay constants (t,).



QO sintered GAP:Cr puck
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Decay time (t,) vs. temperature dependence for thin EB-PVD
Cr:GAP coating follows same calibration curve as Cr:GAP puck.



Coatings for 2D Temperature Mapping

'r:GAP-Coated Specimens with Cooling Holes Ready for 2D Temperature Mapping
NARI |

Top Side EB-PVD
view view Cr.GAP
coated

specimens
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20 Procedure
holes «90° or 20° cooling holes machined into TBC-

coated specimen by EDM or laser drilling.
25 um thick Cr:GAP deposited by EB-PVD.

Specimens ready for 2D mapping of thermal gradients around
cooling holes during exposure to high heat flux laser.
Scheduled for July 2012 for completion of Phase | milestones.



Distribution/Dissemination

ePatent application filed in November 2012: “Temperature and Pressure
Sensors Based on Spin-Allowed Broadband Luminescence of Doped
Orthorhombic Perovskite Structures.”

*Presentation at 9% International Temperature Symposium, Anaheim,
March 2012: “Temperature Sensing Above 1000°C Using Cr-Doped
GdAIO; Spin-Allowed Broadband Luminescence.”

Article submitted to 9t" International Temperature Symposium
Conference Proceedings (same title as presentation).

*Interest expressed from NASA Vehicle Integrated Propulsion Research
(VIPR) and AFRL Versatile Affordable Advanced Turbine Engines (VAATE)
projects.
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Predicted Impact

*Will provide a ready-to-adopt technology for acquiring
accurate noncontact surface temperature measurements in
turbine engine environments (both air- & land-based
engines).

*Will replace thermocouples and pyrometers whenever
thermocouple attachment and pyrometer errors are issues.

*Will become important validation tool for thermal profiling
of turbine engines designed for reduced fuel consumption
and cleaner fuel burn.

*Near-term: Attractiveness as thermographic phosphor for

turbine engine environments may lead to adoption as
phosphor of choice in NASA VIPR and AFRL VAATE projects.
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Next Steps

*Extend optical thermometer capability from 1100° to 1200°C using either

higher purity sapphire or alternative YAG fiber lightpipes.
2D mapping of thermal gradients around cooling holes in button specimens
exposed to high heat flux laser.

*Waiting for facility availability in July 2012 to complete Phase | milestones.

Phase Il

*Move from coupon specimens in laboratory to actual components in
combustion environment.

2D temperature mapping around cooling holes in Honeywell vane during exposure
to afterburner flame of J85 GE-5 engine at AEDC, made possible with in-kind
support from AFRL & Honeywell.

*Integrate low-power LED excitation into on-wing-compatible temperature
probe for engine insertion. Honeywell HPT

Stator Vane Doublet
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Summarized Accomplishments

Demonstrated temperature measurement capability of
Cr:GAP luminescence to 1200°C.

*Successful development of optical thermometer using
Cr:GAP-coated sapphire lightpipes.

eSapphire-rod-based thermometer demonstrated to 1100°C.

*Higher purity sapphire fibers or YAG fibers expected to extend performance
up to 1200°C.

*EB-PVD deposition of Cr:GAP coatings successfully
developed that exhibit desired ultra-bright luminescence
above 1000°C.
*Specimens with cooling holes produced for 2D thermal gradient
mapping.
*Phase Il framework for transition to actual components in
combustion environment.
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